Yu Hsuan Lai, Chien Cheng Li, Yu Chuan Huang, Tzu Yu Huang, Xin Kai Gao, Chung Chi Yang, Chih Shan Tan
{"title":"通过双面钝化提高近红外sn基钙钛矿光电探测器的性能","authors":"Yu Hsuan Lai, Chien Cheng Li, Yu Chuan Huang, Tzu Yu Huang, Xin Kai Gao, Chung Chi Yang, Chih Shan Tan","doi":"10.1002/smll.202409592","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W<sup>−1</sup>, a detectivity of 6.12 × 10¹<sup>3</sup> Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹<sup>3</sup> Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τ<sub>e</sub>) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202409592","citationCount":"0","resultStr":"{\"title\":\"Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications\",\"authors\":\"Yu Hsuan Lai, Chien Cheng Li, Yu Chuan Huang, Tzu Yu Huang, Xin Kai Gao, Chung Chi Yang, Chih Shan Tan\",\"doi\":\"10.1002/smll.202409592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W<sup>−1</sup>, a detectivity of 6.12 × 10¹<sup>3</sup> Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹<sup>3</sup> Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τ<sub>e</sub>) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 5\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202409592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409592\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409592","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications
The development of high-performance Sn-based perovskite photodetectors is presented with double-sided passivation using large alkylammonium interlayers of PEAI and BDAI₂. This dual passivation strategy, applied to the top and bottom of FASnI₃ films, effectively improves film quality by reducing defect density, enhancing carrier mobility, and minimizing non-radiative energy losses at the interfaces. At 720 nm, the photodetectors demonstrate a responsivity of 0.37 A W−1, a detectivity of 6.12 × 10¹3 Jones, and an external quantum efficiency (EQE) of 65.60%, with a rapid response time of 9 µs. Additionally, at 850 nm, the detectivity reaches as high as 3.27 × 10¹3 Jones. Furthermore, the device demonstrated a low 1/f noise of 1.21 × 10⁻¹⁵ AHz⁻⁰.⁵ at 10 Hz. Transient photocurrent (TPC) and transient photovoltage (TPV) measurements revealed a significant increase in charge recombination lifetime (τe) and improved charge transfer efficiency. These results showcase the potential of Sn perovskite photodetectors for near-infrared applications, including autonomous vehicles, biometric recognition, and biomedical treatments.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.