Carolyn Shembrey, Ray Yang, Joshua Casan, Wenxin Hu, Honglin Chen, Gurjeet J. Singh, Teresa Sadras, Krishneel Prasad, Jake Shortt, Ricky W. Johnstone, Joseph A. Trapani, Paul G. Ekert, Mohamed Fareh
{"title":"CRISPR-Cas13错配不耐受原理可实现单碱基精确选择性沉默点突变致癌RNA","authors":"Carolyn Shembrey, Ray Yang, Joshua Casan, Wenxin Hu, Honglin Chen, Gurjeet J. Singh, Teresa Sadras, Krishneel Prasad, Jake Shortt, Ricky W. Johnstone, Joseph A. Trapani, Paul G. Ekert, Mohamed Fareh","doi":"10.1126/sciadv.adl0731","DOIUrl":null,"url":null,"abstract":"Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13. Here, we show that introducing synthetic mismatches at precise positions of the spacer sequence enables de novo design of guide RNAs [CRISPR RNAs (crRNAs)] with strong preferential silencing of point-mutated transcripts. We applied these design principles to effectively silence the oncogenic <jats:italic>KRAS</jats:italic> G12 hotspot, <jats:italic>NRAS G12D</jats:italic> and <jats:italic>BRAF V600E</jats:italic> transcripts with minimal off-target silencing of the wild-type transcripts, underscoring the adaptability of this platform to silence various SNVs. Unexpectedly, the SNV-selective crRNAs harboring mismatched nucleotides reduce the promiscuous collateral activity of the <jats:italic>Rfx</jats:italic> Cas13d ortholog. These findings demonstrate that the CRISPR-Cas13 system can be reprogrammed to target mutant transcripts with single-base precision, showcasing the tremendous potential of this tool in personalized transcriptome editing.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"55 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principles of CRISPR-Cas13 mismatch intolerance enable selective silencing of point-mutated oncogenic RNA with single-base precision\",\"authors\":\"Carolyn Shembrey, Ray Yang, Joshua Casan, Wenxin Hu, Honglin Chen, Gurjeet J. Singh, Teresa Sadras, Krishneel Prasad, Jake Shortt, Ricky W. Johnstone, Joseph A. Trapani, Paul G. Ekert, Mohamed Fareh\",\"doi\":\"10.1126/sciadv.adl0731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13. Here, we show that introducing synthetic mismatches at precise positions of the spacer sequence enables de novo design of guide RNAs [CRISPR RNAs (crRNAs)] with strong preferential silencing of point-mutated transcripts. We applied these design principles to effectively silence the oncogenic <jats:italic>KRAS</jats:italic> G12 hotspot, <jats:italic>NRAS G12D</jats:italic> and <jats:italic>BRAF V600E</jats:italic> transcripts with minimal off-target silencing of the wild-type transcripts, underscoring the adaptability of this platform to silence various SNVs. Unexpectedly, the SNV-selective crRNAs harboring mismatched nucleotides reduce the promiscuous collateral activity of the <jats:italic>Rfx</jats:italic> Cas13d ortholog. These findings demonstrate that the CRISPR-Cas13 system can be reprogrammed to target mutant transcripts with single-base precision, showcasing the tremendous potential of this tool in personalized transcriptome editing.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adl0731\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adl0731","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Principles of CRISPR-Cas13 mismatch intolerance enable selective silencing of point-mutated oncogenic RNA with single-base precision
Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13. Here, we show that introducing synthetic mismatches at precise positions of the spacer sequence enables de novo design of guide RNAs [CRISPR RNAs (crRNAs)] with strong preferential silencing of point-mutated transcripts. We applied these design principles to effectively silence the oncogenic KRAS G12 hotspot, NRAS G12D and BRAF V600E transcripts with minimal off-target silencing of the wild-type transcripts, underscoring the adaptability of this platform to silence various SNVs. Unexpectedly, the SNV-selective crRNAs harboring mismatched nucleotides reduce the promiscuous collateral activity of the Rfx Cas13d ortholog. These findings demonstrate that the CRISPR-Cas13 system can be reprogrammed to target mutant transcripts with single-base precision, showcasing the tremendous potential of this tool in personalized transcriptome editing.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.