{"title":"通过前额叶皮层动态的线性近似推断依赖于上下文的计算","authors":"Joana Soldado-Magraner, Valerio Mante, Maneesh Sahani","doi":"10.1126/sciadv.adl4743","DOIUrl":null,"url":null,"abstract":"The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"14 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring context-dependent computations through linear approximations of prefrontal cortex dynamics\",\"authors\":\"Joana Soldado-Magraner, Valerio Mante, Maneesh Sahani\",\"doi\":\"10.1126/sciadv.adl4743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adl4743\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adl4743","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Inferring context-dependent computations through linear approximations of prefrontal cortex dynamics
The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.