{"title":"用于绘制挥发性溶剂表面温度场和毛细管流动图的荧光成像剂","authors":"Hao Gu, Sibo Wan, Sheng Lu, Yahui Chen, Fang Wang, Shiyue Zheng, Yourong Li, Xiaoqiang Chen","doi":"10.1002/aic.18696","DOIUrl":null,"url":null,"abstract":"The understanding of thermocapillary convection is important in both fundamental and industrial aspects. However, efficient tools that can provide dynamic details of the convective flows are still lacking. Here, we discovered a unique phenomenon of photoinduced fluorogenic shift of <b>HDPI</b> derivatives in chloroform and utilized this trait to map the temperature field and capillary flow on the surface of or inside volatile chloroform with a high spatial resolution and a long observation window. By inducing a proper co-imaging agent that enhanced the fluorescence contrast via generating more distinguishable chromaticity, the fluorescence-based method exhibited further enhanced imaging resolution and elongated observation time, facilitating the continuous monitoring of temperature field and capillary flow. This work presents a powerful tool to study the behaviors of fluid (thermo-)dynamics.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent imaging agents for mapping temperature field and capillary flow on the surface of volatile solvent\",\"authors\":\"Hao Gu, Sibo Wan, Sheng Lu, Yahui Chen, Fang Wang, Shiyue Zheng, Yourong Li, Xiaoqiang Chen\",\"doi\":\"10.1002/aic.18696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The understanding of thermocapillary convection is important in both fundamental and industrial aspects. However, efficient tools that can provide dynamic details of the convective flows are still lacking. Here, we discovered a unique phenomenon of photoinduced fluorogenic shift of <b>HDPI</b> derivatives in chloroform and utilized this trait to map the temperature field and capillary flow on the surface of or inside volatile chloroform with a high spatial resolution and a long observation window. By inducing a proper co-imaging agent that enhanced the fluorescence contrast via generating more distinguishable chromaticity, the fluorescence-based method exhibited further enhanced imaging resolution and elongated observation time, facilitating the continuous monitoring of temperature field and capillary flow. This work presents a powerful tool to study the behaviors of fluid (thermo-)dynamics.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18696\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18696","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fluorescent imaging agents for mapping temperature field and capillary flow on the surface of volatile solvent
The understanding of thermocapillary convection is important in both fundamental and industrial aspects. However, efficient tools that can provide dynamic details of the convective flows are still lacking. Here, we discovered a unique phenomenon of photoinduced fluorogenic shift of HDPI derivatives in chloroform and utilized this trait to map the temperature field and capillary flow on the surface of or inside volatile chloroform with a high spatial resolution and a long observation window. By inducing a proper co-imaging agent that enhanced the fluorescence contrast via generating more distinguishable chromaticity, the fluorescence-based method exhibited further enhanced imaging resolution and elongated observation time, facilitating the continuous monitoring of temperature field and capillary flow. This work presents a powerful tool to study the behaviors of fluid (thermo-)dynamics.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.