{"title":"通过镍光氧催化实现碳水化合物衍生物的位点选择性 O-芳基化","authors":"Sofia Jdanova, James G. Guthrie, Mark S. Taylor","doi":"10.1021/acs.joc.4c02402","DOIUrl":null,"url":null,"abstract":"Site-selective <i>O</i>-arylations of glycoside-derived diols have been achieved by couplings with bromoarenes upon irradiation with blue LEDs in the presence of an iridium photocatalyst and a nickel complex. The use of hexamethylenetetramine (hexamine) in place of quinuclidine, along with the application of a methoxy-substituted 2,2′-bipyridine ligand, provided improvements in yield for this relatively challenging substrate class. Selective arylation took place at the less sterically hindered OH group, as determined by the substitution pattern and configuration of the glycoside substrate. Percent buried volume calculations were used to quantify the relative levels of steric hindrance at the two reactive sites.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"18 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-Selective O-Arylation of Carbohydrate Derivatives through Nickel–Photoredox Catalysis\",\"authors\":\"Sofia Jdanova, James G. Guthrie, Mark S. Taylor\",\"doi\":\"10.1021/acs.joc.4c02402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Site-selective <i>O</i>-arylations of glycoside-derived diols have been achieved by couplings with bromoarenes upon irradiation with blue LEDs in the presence of an iridium photocatalyst and a nickel complex. The use of hexamethylenetetramine (hexamine) in place of quinuclidine, along with the application of a methoxy-substituted 2,2′-bipyridine ligand, provided improvements in yield for this relatively challenging substrate class. Selective arylation took place at the less sterically hindered OH group, as determined by the substitution pattern and configuration of the glycoside substrate. Percent buried volume calculations were used to quantify the relative levels of steric hindrance at the two reactive sites.\",\"PeriodicalId\":57,\"journal\":{\"name\":\"Journal of Organic Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.joc.4c02402\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02402","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Site-Selective O-Arylation of Carbohydrate Derivatives through Nickel–Photoredox Catalysis
Site-selective O-arylations of glycoside-derived diols have been achieved by couplings with bromoarenes upon irradiation with blue LEDs in the presence of an iridium photocatalyst and a nickel complex. The use of hexamethylenetetramine (hexamine) in place of quinuclidine, along with the application of a methoxy-substituted 2,2′-bipyridine ligand, provided improvements in yield for this relatively challenging substrate class. Selective arylation took place at the less sterically hindered OH group, as determined by the substitution pattern and configuration of the glycoside substrate. Percent buried volume calculations were used to quantify the relative levels of steric hindrance at the two reactive sites.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.