用于不同放大率宽带成像的两百纳米薄型多焦氧化石墨烯金属膜

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-18 DOI:10.1021/acsnano.4c13213
Guiyuan Cao, Siqi Wang, Wenbo Liu, Huihui Zhang, Jihong Han, Xining Xu, Jingheng Liu, Weisong Zhao, Haoyu Li, Han Lin, Baohua Jia, Shibiao Wei
{"title":"用于不同放大率宽带成像的两百纳米薄型多焦氧化石墨烯金属膜","authors":"Guiyuan Cao, Siqi Wang, Wenbo Liu, Huihui Zhang, Jihong Han, Xining Xu, Jingheng Liu, Weisong Zhao, Haoyu Li, Han Lin, Baohua Jia, Shibiao Wei","doi":"10.1021/acsnano.4c13213","DOIUrl":null,"url":null,"abstract":"Conventional microscopes, which rely on multiple objective lenses for varying magnifications, are bulky, complex, and costly, making them difficult to integrate into compact devices. They require frequent manual adjustments, complicating the imaging process and increasing maintenance burdens. This paper explores the potential of single ultrathin graphene metalens to address this issue. We propose and demonstrate a 200 nm thin multiaxial focus graphene metalens with high-quality focusing, designed using spatial multiplexing and fabricated by one-step laser nanoprinting. A five-focal graphene metalens has been created, achieving clear imaging with varying magnifications across a broadband covering the entire visible wavelength. The graphene metalens has significantly reduced the size of the imaging system by orders of magnitude and holds profound potential for facilitating the integration and miniaturization of optical microscopic systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"22 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Hundred Nanometer Thin Multifocal Graphene Oxide Metalens for Varying Magnification Broadband Imaging\",\"authors\":\"Guiyuan Cao, Siqi Wang, Wenbo Liu, Huihui Zhang, Jihong Han, Xining Xu, Jingheng Liu, Weisong Zhao, Haoyu Li, Han Lin, Baohua Jia, Shibiao Wei\",\"doi\":\"10.1021/acsnano.4c13213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional microscopes, which rely on multiple objective lenses for varying magnifications, are bulky, complex, and costly, making them difficult to integrate into compact devices. They require frequent manual adjustments, complicating the imaging process and increasing maintenance burdens. This paper explores the potential of single ultrathin graphene metalens to address this issue. We propose and demonstrate a 200 nm thin multiaxial focus graphene metalens with high-quality focusing, designed using spatial multiplexing and fabricated by one-step laser nanoprinting. A five-focal graphene metalens has been created, achieving clear imaging with varying magnifications across a broadband covering the entire visible wavelength. The graphene metalens has significantly reduced the size of the imaging system by orders of magnitude and holds profound potential for facilitating the integration and miniaturization of optical microscopic systems.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c13213\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13213","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two Hundred Nanometer Thin Multifocal Graphene Oxide Metalens for Varying Magnification Broadband Imaging

Two Hundred Nanometer Thin Multifocal Graphene Oxide Metalens for Varying Magnification Broadband Imaging
Conventional microscopes, which rely on multiple objective lenses for varying magnifications, are bulky, complex, and costly, making them difficult to integrate into compact devices. They require frequent manual adjustments, complicating the imaging process and increasing maintenance burdens. This paper explores the potential of single ultrathin graphene metalens to address this issue. We propose and demonstrate a 200 nm thin multiaxial focus graphene metalens with high-quality focusing, designed using spatial multiplexing and fabricated by one-step laser nanoprinting. A five-focal graphene metalens has been created, achieving clear imaging with varying magnifications across a broadband covering the entire visible wavelength. The graphene metalens has significantly reduced the size of the imaging system by orders of magnitude and holds profound potential for facilitating the integration and miniaturization of optical microscopic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信