用于下一代光电子学的宽禁带铅卤化钙钛矿:现状和未来展望

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-18 DOI:10.1021/acsnano.4c12107
Changbo Li, Changshun Chen, Weiyin Gao, He Dong, Yipeng Zhou, Zhongbin Wu, Chenxin Ran
{"title":"用于下一代光电子学的宽禁带铅卤化钙钛矿:现状和未来展望","authors":"Changbo Li, Changshun Chen, Weiyin Gao, He Dong, Yipeng Zhou, Zhongbin Wu, Chenxin Ran","doi":"10.1021/acsnano.4c12107","DOIUrl":null,"url":null,"abstract":"Over the past decade, lead halide perovskites (LHPs), an emerging class of organic–inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"256 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects\",\"authors\":\"Changbo Li, Changshun Chen, Weiyin Gao, He Dong, Yipeng Zhou, Zhongbin Wu, Chenxin Ran\",\"doi\":\"10.1021/acsnano.4c12107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, lead halide perovskites (LHPs), an emerging class of organic–inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"256 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12107\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12107","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,卤化铅钙钛矿(LHPs)作为一类新兴的有机-无机离子型半导体引起了全世界的关注,为下一代光电子技术注入了活力。易调谐的带隙是lhp的一个引人注目的特点,使它们在各种纳米/微尺度应用中得到广泛应用。值得注意的是,由于低成本、溶液可加工性、优越的光电特性和灵活性等优点,宽带隙(WBG) lhp被认为是传统WBG半导体的有希望的替代品,可以提高成本效益并扩展传统WBG器件的应用场景。本文从材料基础、光电器件及实际应用等方面综述了WBG lhp及其光电子学的最新研究进展。首先,介绍了WBG lhp的特点和不足,客观地展示了WBG lhp的自然特征。然后,我们分别描述了三种典型的基于WBG lhp的光电器件,包括太阳能电池、发光二极管和光电探测器。接着,详细介绍了这些光电器件在集成功能系统中的应用。最后,讨论了WBG lhp在光电应用中存在的挑战和未来的前景。本文综述了WGB lhp对促进下一代光电子产业发展的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects

Wide-Bandgap Lead Halide Perovskites for Next-Generation Optoelectronics: Current Status and Future Prospects
Over the past decade, lead halide perovskites (LHPs), an emerging class of organic–inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices. Herein, we provide a comprehensive review on the up-to-date research progress of WBG LHPs and their optoelectronics in terms of material fundamentals, optoelectronic devices, and their practical applications. First, the features and shortcomings of WBG LHPs are introduced to objectively display their natural features. Then we separately depict three typical optoelectronic devices based on WBG LHPs, including solar cells, light emitting diodes, and photodetectors. Sequentially, the inspiring applications of these optoelectronic devices in integrated functional systems are elaborately demonstrated. At last, the remaining challenges and future promise of WBG LHPs in optoelectronic applications are discussed. This review highlights the significance of WGB LHPs for promoting the development of the next-generation optoelectronics industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信