Haijin Ni, Lei Gao, Jinlong Zhu, Dubin Huang, Wen Yin, Ruqiang Zou, Changping Li, Songbai Han
{"title":"探索固体导体中的离子传输机制:静态结构特性和阴离子动力学的双重视角","authors":"Haijin Ni, Lei Gao, Jinlong Zhu, Dubin Huang, Wen Yin, Ruqiang Zou, Changping Li, Songbai Han","doi":"10.1021/acs.chemmater.4c02478","DOIUrl":null,"url":null,"abstract":"Solid Li-ion conductors require high ionic conductivity to ensure rapid Li<sup>+</sup> transport within solid-state batteries, necessitating a thorough examination of the relationship between the structure and Li<sup>+</sup> transport mechanisms. Factors such as crystal symmetries, anion electronegativity, and Li-anion bond lengths are critical in influencing the ionic conductivities of solid conductors. Furthermore, the relationship between Li<sup>+</sup> transport and the dynamic behavior of anions, particularly through mechanisms such as the paddle-wheel effect, highlights the complexity of ionic transport in solid conductors. In this study, we focus on investigating the antiperovskite-type ionic conductor Li<sub>2</sub>OHX (X = Cl or Br), which integrates various static structural features with dynamic anion behavior, to delve deeper into the structure–function relationship. Employing Rietveld refinement on neutron powder diffraction, maximum entropy method analysis, and ab initio molecular dynamics simulations, our findings reveal that Li<sup>+</sup> transport is influenced not only by static structural properties like space groups, anion electronegativity, Li vacancies, and Li–O bond lengths but also, and more crucially, by the dynamics of OH<sup>–</sup> anions. These insights highlight the pivotal role of anion dynamics and offer foundational guidelines for designing solid ionic conductors.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"54 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Ionic Transport Mechanisms in Solid Conductors: A Dual Perspective on Static Structural Properties and Anion Dynamics\",\"authors\":\"Haijin Ni, Lei Gao, Jinlong Zhu, Dubin Huang, Wen Yin, Ruqiang Zou, Changping Li, Songbai Han\",\"doi\":\"10.1021/acs.chemmater.4c02478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid Li-ion conductors require high ionic conductivity to ensure rapid Li<sup>+</sup> transport within solid-state batteries, necessitating a thorough examination of the relationship between the structure and Li<sup>+</sup> transport mechanisms. Factors such as crystal symmetries, anion electronegativity, and Li-anion bond lengths are critical in influencing the ionic conductivities of solid conductors. Furthermore, the relationship between Li<sup>+</sup> transport and the dynamic behavior of anions, particularly through mechanisms such as the paddle-wheel effect, highlights the complexity of ionic transport in solid conductors. In this study, we focus on investigating the antiperovskite-type ionic conductor Li<sub>2</sub>OHX (X = Cl or Br), which integrates various static structural features with dynamic anion behavior, to delve deeper into the structure–function relationship. Employing Rietveld refinement on neutron powder diffraction, maximum entropy method analysis, and ab initio molecular dynamics simulations, our findings reveal that Li<sup>+</sup> transport is influenced not only by static structural properties like space groups, anion electronegativity, Li vacancies, and Li–O bond lengths but also, and more crucially, by the dynamics of OH<sup>–</sup> anions. These insights highlight the pivotal role of anion dynamics and offer foundational guidelines for designing solid ionic conductors.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02478\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02478","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exploring Ionic Transport Mechanisms in Solid Conductors: A Dual Perspective on Static Structural Properties and Anion Dynamics
Solid Li-ion conductors require high ionic conductivity to ensure rapid Li+ transport within solid-state batteries, necessitating a thorough examination of the relationship between the structure and Li+ transport mechanisms. Factors such as crystal symmetries, anion electronegativity, and Li-anion bond lengths are critical in influencing the ionic conductivities of solid conductors. Furthermore, the relationship between Li+ transport and the dynamic behavior of anions, particularly through mechanisms such as the paddle-wheel effect, highlights the complexity of ionic transport in solid conductors. In this study, we focus on investigating the antiperovskite-type ionic conductor Li2OHX (X = Cl or Br), which integrates various static structural features with dynamic anion behavior, to delve deeper into the structure–function relationship. Employing Rietveld refinement on neutron powder diffraction, maximum entropy method analysis, and ab initio molecular dynamics simulations, our findings reveal that Li+ transport is influenced not only by static structural properties like space groups, anion electronegativity, Li vacancies, and Li–O bond lengths but also, and more crucially, by the dynamics of OH– anions. These insights highlight the pivotal role of anion dynamics and offer foundational guidelines for designing solid ionic conductors.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.