外延 1T-TaS2 螺旋中的可调谐电子相关性

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chung-Jen Chen, Chun-An Chen, Yu-Hsiang Cheng, Chia-Tzu Chung, Yu-Ting Lin, Yi-Cheng Chiang, Ting-Kuo Lee, Yi-Hsien Lee
{"title":"外延 1T-TaS2 螺旋中的可调谐电子相关性","authors":"Chung-Jen Chen, Chun-An Chen, Yu-Hsiang Cheng, Chia-Tzu Chung, Yu-Ting Lin, Yi-Cheng Chiang, Ting-Kuo Lee, Yi-Hsien Lee","doi":"10.1002/adma.202413926","DOIUrl":null,"url":null,"abstract":"Tantalum disulfide (1T-TaS<sub>2</sub>), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge. Here, spiral lattices in the epitaxial TaS<sub>2</sub> spirals are studied to probe collective properties with tunable interlayer interactions. A scalable synthesis of epitaxial TaS<sub>2</sub> spirals is presented. A more than 50%-increased interlayer spacing enables prototype decoupled monolayers for enhanced electronic correlation exhibiting Mott physics at room-temperature and a simplified system to explore collective properties in vdW materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"64 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Electron Correlation in Epitaxial 1T-TaS2 Spirals\",\"authors\":\"Chung-Jen Chen, Chun-An Chen, Yu-Hsiang Cheng, Chia-Tzu Chung, Yu-Ting Lin, Yi-Cheng Chiang, Ting-Kuo Lee, Yi-Hsien Lee\",\"doi\":\"10.1002/adma.202413926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tantalum disulfide (1T-TaS<sub>2</sub>), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge. Here, spiral lattices in the epitaxial TaS<sub>2</sub> spirals are studied to probe collective properties with tunable interlayer interactions. A scalable synthesis of epitaxial TaS<sub>2</sub> spirals is presented. A more than 50%-increased interlayer spacing enables prototype decoupled monolayers for enhanced electronic correlation exhibiting Mott physics at room-temperature and a simplified system to explore collective properties in vdW materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202413926\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413926","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable Electron Correlation in Epitaxial 1T-TaS2 Spirals

Tunable Electron Correlation in Epitaxial 1T-TaS2 Spirals
Tantalum disulfide (1T-TaS2), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge. Here, spiral lattices in the epitaxial TaS2 spirals are studied to probe collective properties with tunable interlayer interactions. A scalable synthesis of epitaxial TaS2 spirals is presented. A more than 50%-increased interlayer spacing enables prototype decoupled monolayers for enhanced electronic correlation exhibiting Mott physics at room-temperature and a simplified system to explore collective properties in vdW materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信