定向纤维注入挤压功能梯度纤维增强砂浆的力学性能

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Rashed Alarrak , Alexander S. Brand
{"title":"定向纤维注入挤压功能梯度纤维增强砂浆的力学性能","authors":"Rashed Alarrak ,&nbsp;Alexander S. Brand","doi":"10.1016/j.cemconcomp.2024.105896","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigated the mechanical performance of Functionally Graded Fiber-Reinforced Concrete (FG-FRC) produced <em>via</em> extrusion with a targeted fiber injection. Flexural toughness was assessed using a modified ASTM C1609, and fracture properties were analyzed through implementation of the two-parameter fracture model. The study introduced an innovative targeted fiber injection technique using a conveyor system, tailored for the integration of high-stiffness steel fibers into the mortar prior to extrusion. This method permits the use of fibers in more extrusion systems, since the fibers cannot jam in the pump. The research utilized digital image correlation to observe the full displacement field, allowing for an in-depth examination of crack propagation and strain localization. Additionally, X-ray computed tomography was employed to analyze fiber dosage and distribution within the FG-FRC layers. Results indicated that the targeted fiber injection method facilitated effective fiber distribution within FG-FRC layers, leading to enhanced mechanical performance through fiber dosage's optimization.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105896"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical performance of extruded functionally graded fiber-reinforced mortar with targeted fiber injection\",\"authors\":\"Rashed Alarrak ,&nbsp;Alexander S. Brand\",\"doi\":\"10.1016/j.cemconcomp.2024.105896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigated the mechanical performance of Functionally Graded Fiber-Reinforced Concrete (FG-FRC) produced <em>via</em> extrusion with a targeted fiber injection. Flexural toughness was assessed using a modified ASTM C1609, and fracture properties were analyzed through implementation of the two-parameter fracture model. The study introduced an innovative targeted fiber injection technique using a conveyor system, tailored for the integration of high-stiffness steel fibers into the mortar prior to extrusion. This method permits the use of fibers in more extrusion systems, since the fibers cannot jam in the pump. The research utilized digital image correlation to observe the full displacement field, allowing for an in-depth examination of crack propagation and strain localization. Additionally, X-ray computed tomography was employed to analyze fiber dosage and distribution within the FG-FRC layers. Results indicated that the targeted fiber injection method facilitated effective fiber distribution within FG-FRC layers, leading to enhanced mechanical performance through fiber dosage's optimization.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105896\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524004694\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004694","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了通过定向纤维注入挤压法生产的功能级配纤维增强混凝土(FG-FRC)的机械性能。采用修改后的 ASTM C1609 评估了挠曲韧性,并通过实施双参数断裂模型分析了断裂性能。研究采用了一种创新的定向纤维注射技术,该技术使用输送系统,专门用于在挤压之前将高刚度钢纤维整合到砂浆中。这种方法允许在更多的挤压系统中使用纤维,因为纤维不会卡在泵中。该研究利用数字图像相关技术观察整个位移场,从而深入研究裂纹扩展和应变定位。此外,还采用了 X 射线计算机断层扫描技术来分析 FG-FRC 层内的纤维用量和分布情况。结果表明,有针对性的纤维注入方法促进了纤维在 FG-FRC 层内的有效分布,通过优化纤维用量提高了机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical performance of extruded functionally graded fiber-reinforced mortar with targeted fiber injection
This research investigated the mechanical performance of Functionally Graded Fiber-Reinforced Concrete (FG-FRC) produced via extrusion with a targeted fiber injection. Flexural toughness was assessed using a modified ASTM C1609, and fracture properties were analyzed through implementation of the two-parameter fracture model. The study introduced an innovative targeted fiber injection technique using a conveyor system, tailored for the integration of high-stiffness steel fibers into the mortar prior to extrusion. This method permits the use of fibers in more extrusion systems, since the fibers cannot jam in the pump. The research utilized digital image correlation to observe the full displacement field, allowing for an in-depth examination of crack propagation and strain localization. Additionally, X-ray computed tomography was employed to analyze fiber dosage and distribution within the FG-FRC layers. Results indicated that the targeted fiber injection method facilitated effective fiber distribution within FG-FRC layers, leading to enhanced mechanical performance through fiber dosage's optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信