外部Stokes问题的非奇核Dirichlet-to-Dirichlet映射方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Xiaojuan Liu, Maojun Li, Tao Yin, Shangyou Zhang
{"title":"外部Stokes问题的非奇核Dirichlet-to-Dirichlet映射方法","authors":"Xiaojuan Liu,&nbsp;Maojun Li,&nbsp;Tao Yin,&nbsp;Shangyou Zhang","doi":"10.1007/s10444-024-10216-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies the finite element method for solving the exterior Stokes problem in two dimensions. A nonlocal boundary condition is defined using a nonsingular-kernel Dirichlet-to-Dirichlet (DtD) mapping, which maps the Dirichlet data on an interior circle to the Dirichlet data on another circular artificial boundary based on the Poisson integral formula of the Stokes problem. The truncated problem is then solved using the MINI-element method and a simple DtD iteration strategy, resulting into a sequence of unique and geometrically (<i>h</i>- independent) convergent solutions. The quasi-optimal error estimate is proved for the iterative solution at the end of the iteration process. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonsingular-kernel Dirichlet-to-Dirichlet mapping method for the exterior Stokes problem\",\"authors\":\"Xiaojuan Liu,&nbsp;Maojun Li,&nbsp;Tao Yin,&nbsp;Shangyou Zhang\",\"doi\":\"10.1007/s10444-024-10216-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies the finite element method for solving the exterior Stokes problem in two dimensions. A nonlocal boundary condition is defined using a nonsingular-kernel Dirichlet-to-Dirichlet (DtD) mapping, which maps the Dirichlet data on an interior circle to the Dirichlet data on another circular artificial boundary based on the Poisson integral formula of the Stokes problem. The truncated problem is then solved using the MINI-element method and a simple DtD iteration strategy, resulting into a sequence of unique and geometrically (<i>h</i>- independent) convergent solutions. The quasi-optimal error estimate is proved for the iterative solution at the end of the iteration process. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10216-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10216-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了求解二维外斯托克斯问题的有限元方法。基于Stokes问题的泊松积分公式,利用非奇异核Dirichlet-to-Dirichlet (DtD)映射定义了一个非局部边界条件,该映射将内圆上的Dirichlet数据映射到另一个圆形人工边界上的Dirichlet数据。然后使用MINI-element方法和简单的DtD迭代策略求解截断问题,得到一系列唯一且几何上(h-无关)收敛的解。在迭代过程结束时,证明了迭代解的拟最优误差估计。数值实验验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonsingular-kernel Dirichlet-to-Dirichlet mapping method for the exterior Stokes problem

This paper studies the finite element method for solving the exterior Stokes problem in two dimensions. A nonlocal boundary condition is defined using a nonsingular-kernel Dirichlet-to-Dirichlet (DtD) mapping, which maps the Dirichlet data on an interior circle to the Dirichlet data on another circular artificial boundary based on the Poisson integral formula of the Stokes problem. The truncated problem is then solved using the MINI-element method and a simple DtD iteration strategy, resulting into a sequence of unique and geometrically (h- independent) convergent solutions. The quasi-optimal error estimate is proved for the iterative solution at the end of the iteration process. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信