Eduardo Bañados, Yana Khusanova, Roberto Decarli, Emmanuel Momjian, Fabian Walter, Thomas Connor, Christopher L. Carilli, Chiara Mazzucchelli, Sofía Rojas-Ruiz and Bram P. Venemans
{"title":"[C] z = 7耀变体的性质和远红外变异性","authors":"Eduardo Bañados, Yana Khusanova, Roberto Decarli, Emmanuel Momjian, Fabian Walter, Thomas Connor, Christopher L. Carilli, Chiara Mazzucchelli, Sofía Rojas-Ruiz and Bram P. Venemans","doi":"10.3847/2041-8213/ad823b","DOIUrl":null,"url":null,"abstract":"We present millimeter observations of the host galaxy of the most distant blazar known, VLASS J041009.05−013919.88 (hereafter J0410–0139) at z = 7, using Atacama Large Millimeter/submillimeter Array (ALMA) and NOrthern Extended Millimeter Array (NOEMA) observations. The ALMA data reveal a (2.02 ± 0.36) × 1042 erg s−1 [C ii] 158 μm emission line at z = 6.9964 with a [C ii]-inferred star formation rate (SFR) of 58 ± 9 M⊙ yr−1. We estimate a dynamical mass of Mdyn,[C ii] = (4.6 ± 2.0) × 109M⊙, implying a black hole mass to host a dynamical mass ratio of . The 238 GHz continuum (rest-frame IR) decreased by ∼33% from the NOEMA to the ALMA observations taken ∼10 months apart. The Very Large Array 3–10 GHz radio flux densities showed a ∼37% decrease in a similar time frame, suggesting a causal connection. At face value, J0410–0139 would have the lowest [C ii]-to-IR luminosity ratio of a z > 5.7 quasar reported to date (∼10−4). However, if only <20% of the measured IR luminosity was due to thermal emission from dust, the [C ii]-to-IR luminosity ratio would be typical of (U)LIRGs, and the SFRs derived from [C ii] and IR luminosities would be consistent. These results provide further evidence that synchrotron emission significantly contributes to the observed rest-frame IR emission of J0410–0139, similar to what has been reported in some radio-loud active galactic nuclei at z < 1.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[C ii] Properties and Far-infrared Variability of a z = 7 Blazar\",\"authors\":\"Eduardo Bañados, Yana Khusanova, Roberto Decarli, Emmanuel Momjian, Fabian Walter, Thomas Connor, Christopher L. Carilli, Chiara Mazzucchelli, Sofía Rojas-Ruiz and Bram P. Venemans\",\"doi\":\"10.3847/2041-8213/ad823b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present millimeter observations of the host galaxy of the most distant blazar known, VLASS J041009.05−013919.88 (hereafter J0410–0139) at z = 7, using Atacama Large Millimeter/submillimeter Array (ALMA) and NOrthern Extended Millimeter Array (NOEMA) observations. The ALMA data reveal a (2.02 ± 0.36) × 1042 erg s−1 [C ii] 158 μm emission line at z = 6.9964 with a [C ii]-inferred star formation rate (SFR) of 58 ± 9 M⊙ yr−1. We estimate a dynamical mass of Mdyn,[C ii] = (4.6 ± 2.0) × 109M⊙, implying a black hole mass to host a dynamical mass ratio of . The 238 GHz continuum (rest-frame IR) decreased by ∼33% from the NOEMA to the ALMA observations taken ∼10 months apart. The Very Large Array 3–10 GHz radio flux densities showed a ∼37% decrease in a similar time frame, suggesting a causal connection. At face value, J0410–0139 would have the lowest [C ii]-to-IR luminosity ratio of a z > 5.7 quasar reported to date (∼10−4). However, if only <20% of the measured IR luminosity was due to thermal emission from dust, the [C ii]-to-IR luminosity ratio would be typical of (U)LIRGs, and the SFRs derived from [C ii] and IR luminosities would be consistent. These results provide further evidence that synchrotron emission significantly contributes to the observed rest-frame IR emission of J0410–0139, similar to what has been reported in some radio-loud active galactic nuclei at z < 1.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad823b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad823b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[C ii] Properties and Far-infrared Variability of a z = 7 Blazar
We present millimeter observations of the host galaxy of the most distant blazar known, VLASS J041009.05−013919.88 (hereafter J0410–0139) at z = 7, using Atacama Large Millimeter/submillimeter Array (ALMA) and NOrthern Extended Millimeter Array (NOEMA) observations. The ALMA data reveal a (2.02 ± 0.36) × 1042 erg s−1 [C ii] 158 μm emission line at z = 6.9964 with a [C ii]-inferred star formation rate (SFR) of 58 ± 9 M⊙ yr−1. We estimate a dynamical mass of Mdyn,[C ii] = (4.6 ± 2.0) × 109M⊙, implying a black hole mass to host a dynamical mass ratio of . The 238 GHz continuum (rest-frame IR) decreased by ∼33% from the NOEMA to the ALMA observations taken ∼10 months apart. The Very Large Array 3–10 GHz radio flux densities showed a ∼37% decrease in a similar time frame, suggesting a causal connection. At face value, J0410–0139 would have the lowest [C ii]-to-IR luminosity ratio of a z > 5.7 quasar reported to date (∼10−4). However, if only <20% of the measured IR luminosity was due to thermal emission from dust, the [C ii]-to-IR luminosity ratio would be typical of (U)LIRGs, and the SFRs derived from [C ii] and IR luminosities would be consistent. These results provide further evidence that synchrotron emission significantly contributes to the observed rest-frame IR emission of J0410–0139, similar to what has been reported in some radio-loud active galactic nuclei at z < 1.