Ranhong Xu, Haiyu Chen, Yougang Wang, Haomin Qi, Yinuo Chen, Anqi Dai, Siqi Yang, Yue Wang, Yan Zeng, Jinquan Li
{"title":"嗅球小胶质细胞激活介导臭氧暴露小鼠嗅觉和认知功能障碍的神经元焦亡","authors":"Ranhong Xu, Haiyu Chen, Yougang Wang, Haomin Qi, Yinuo Chen, Anqi Dai, Siqi Yang, Yue Wang, Yan Zeng, Jinquan Li","doi":"10.1016/j.jhazmat.2024.136901","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a notable increase in the concentration of air pollutants in the troposphere, especially ozone. However, limited research has gone beyond examining histopathological alterations in the olfactory bulb (OB) to explore the effects of ozone exposure on olfactory and cognitive functions. In our study, we exposed nine-month-old C57BL/6 mice to ozone at a concentration of 1.0 ppm for 13 weeks to examine the effects of ozone on the OB. The results indicated that ozone exposure induces olfactory and cognitive impairments in the mice. Subsequently, microglia in the OB are activated, leading to neuroinflammation. Ozone-induced downregulation of PSD95 and Synaptophysin, which was accompanied by a decrease in dendritic length and spine density. Simultaneously, increasing in the co-labeling of C1q, Iba1, and PSD95 after ozone exposure indicated that C1q-mediated synaptic phagocytosis by microglia might play a role in synaptic damage. Furthermore, the co-labeling of GSDMD-N and NEUN results suggests that ozone exposure triggers pyroptosis in neurons. Additionally, minocycline administration can alleviate ozone-induced olfactory and cognitive impairments by suppressing microglial activation. This study illustrates that prolonged ozone exposure leads to microglial activation in the OB, causing synaptic damage, neuronal pyroptosis, and subsequent deficits in olfactory and cognitive functions.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"14 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Olfactory bulb microglia activation mediates neuronal pyroptosis in ozone-exposed mice with olfactory and cognitive dysfunction\",\"authors\":\"Ranhong Xu, Haiyu Chen, Yougang Wang, Haomin Qi, Yinuo Chen, Anqi Dai, Siqi Yang, Yue Wang, Yan Zeng, Jinquan Li\",\"doi\":\"10.1016/j.jhazmat.2024.136901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been a notable increase in the concentration of air pollutants in the troposphere, especially ozone. However, limited research has gone beyond examining histopathological alterations in the olfactory bulb (OB) to explore the effects of ozone exposure on olfactory and cognitive functions. In our study, we exposed nine-month-old C57BL/6 mice to ozone at a concentration of 1.0 ppm for 13 weeks to examine the effects of ozone on the OB. The results indicated that ozone exposure induces olfactory and cognitive impairments in the mice. Subsequently, microglia in the OB are activated, leading to neuroinflammation. Ozone-induced downregulation of PSD95 and Synaptophysin, which was accompanied by a decrease in dendritic length and spine density. Simultaneously, increasing in the co-labeling of C1q, Iba1, and PSD95 after ozone exposure indicated that C1q-mediated synaptic phagocytosis by microglia might play a role in synaptic damage. Furthermore, the co-labeling of GSDMD-N and NEUN results suggests that ozone exposure triggers pyroptosis in neurons. Additionally, minocycline administration can alleviate ozone-induced olfactory and cognitive impairments by suppressing microglial activation. This study illustrates that prolonged ozone exposure leads to microglial activation in the OB, causing synaptic damage, neuronal pyroptosis, and subsequent deficits in olfactory and cognitive functions.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136901\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136901","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Olfactory bulb microglia activation mediates neuronal pyroptosis in ozone-exposed mice with olfactory and cognitive dysfunction
In recent years, there has been a notable increase in the concentration of air pollutants in the troposphere, especially ozone. However, limited research has gone beyond examining histopathological alterations in the olfactory bulb (OB) to explore the effects of ozone exposure on olfactory and cognitive functions. In our study, we exposed nine-month-old C57BL/6 mice to ozone at a concentration of 1.0 ppm for 13 weeks to examine the effects of ozone on the OB. The results indicated that ozone exposure induces olfactory and cognitive impairments in the mice. Subsequently, microglia in the OB are activated, leading to neuroinflammation. Ozone-induced downregulation of PSD95 and Synaptophysin, which was accompanied by a decrease in dendritic length and spine density. Simultaneously, increasing in the co-labeling of C1q, Iba1, and PSD95 after ozone exposure indicated that C1q-mediated synaptic phagocytosis by microglia might play a role in synaptic damage. Furthermore, the co-labeling of GSDMD-N and NEUN results suggests that ozone exposure triggers pyroptosis in neurons. Additionally, minocycline administration can alleviate ozone-induced olfactory and cognitive impairments by suppressing microglial activation. This study illustrates that prolonged ozone exposure leads to microglial activation in the OB, causing synaptic damage, neuronal pyroptosis, and subsequent deficits in olfactory and cognitive functions.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.