{"title":"Pb(II)掺杂镉基金属卤化物中原子约束激子增强的余辉蓝发射","authors":"Shuaigang Ge, Qilin Wei, Chaowei Huang, Chengzhi Yang, Kaihuang Huang, Bingsuo Zou","doi":"10.1063/5.0244883","DOIUrl":null,"url":null,"abstract":"All-inorganic metal halide perovskites possess significant potentiality in lighting, bioimaging, and optical anti-counterfeiting due to their exceptional and unique properties. However, the exploration of efficient, robustly stable, and long-persistent luminescent blue light-emitting materials poses huge challenges, especially in understanding their electronic structure and photophysical processes. In this work, high-purity Pb2+-doped CsCdCl3 crystals were synthesized using a straightforward hydrothermal method. Parts of Pb2+ ions replaced partial Cd2+ sites in the face-sharing octahedra and formed atomically confined excitons around the Pb(II) octahedra. This exciton could emit blue light (423 nm) at room temperature with an enhanced radiation transition probability at a nearly 90% quantum yield. The incorporation of Pb2+ and confined exciton formation not only shifted the emission color region from weak orange to strong blue but also exhibited intrinsic afterglow behavior as CsCdCl3 perovskite. The Raman spectra and TL spectra indicated their polaronic states corresponding to the A1g 244 cm−1 phonon mode coupling to electron, which dominated their afterglow processes in undoped and doped CsCdCl3. These findings could not only facilitate the understanding of atomically confined excitons around dopant ions as dominant emission centers to tune emission color in halide semiconductors, unveiling the nature of afterglow phenomena in this halide material, but could also find unique applications in optical devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"256 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced afterglow blue emissions from atomically confined excitons in Pb(II)-doped cadmium-based metal halides\",\"authors\":\"Shuaigang Ge, Qilin Wei, Chaowei Huang, Chengzhi Yang, Kaihuang Huang, Bingsuo Zou\",\"doi\":\"10.1063/5.0244883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-inorganic metal halide perovskites possess significant potentiality in lighting, bioimaging, and optical anti-counterfeiting due to their exceptional and unique properties. However, the exploration of efficient, robustly stable, and long-persistent luminescent blue light-emitting materials poses huge challenges, especially in understanding their electronic structure and photophysical processes. In this work, high-purity Pb2+-doped CsCdCl3 crystals were synthesized using a straightforward hydrothermal method. Parts of Pb2+ ions replaced partial Cd2+ sites in the face-sharing octahedra and formed atomically confined excitons around the Pb(II) octahedra. This exciton could emit blue light (423 nm) at room temperature with an enhanced radiation transition probability at a nearly 90% quantum yield. The incorporation of Pb2+ and confined exciton formation not only shifted the emission color region from weak orange to strong blue but also exhibited intrinsic afterglow behavior as CsCdCl3 perovskite. The Raman spectra and TL spectra indicated their polaronic states corresponding to the A1g 244 cm−1 phonon mode coupling to electron, which dominated their afterglow processes in undoped and doped CsCdCl3. These findings could not only facilitate the understanding of atomically confined excitons around dopant ions as dominant emission centers to tune emission color in halide semiconductors, unveiling the nature of afterglow phenomena in this halide material, but could also find unique applications in optical devices.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"256 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0244883\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244883","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Enhanced afterglow blue emissions from atomically confined excitons in Pb(II)-doped cadmium-based metal halides
All-inorganic metal halide perovskites possess significant potentiality in lighting, bioimaging, and optical anti-counterfeiting due to their exceptional and unique properties. However, the exploration of efficient, robustly stable, and long-persistent luminescent blue light-emitting materials poses huge challenges, especially in understanding their electronic structure and photophysical processes. In this work, high-purity Pb2+-doped CsCdCl3 crystals were synthesized using a straightforward hydrothermal method. Parts of Pb2+ ions replaced partial Cd2+ sites in the face-sharing octahedra and formed atomically confined excitons around the Pb(II) octahedra. This exciton could emit blue light (423 nm) at room temperature with an enhanced radiation transition probability at a nearly 90% quantum yield. The incorporation of Pb2+ and confined exciton formation not only shifted the emission color region from weak orange to strong blue but also exhibited intrinsic afterglow behavior as CsCdCl3 perovskite. The Raman spectra and TL spectra indicated their polaronic states corresponding to the A1g 244 cm−1 phonon mode coupling to electron, which dominated their afterglow processes in undoped and doped CsCdCl3. These findings could not only facilitate the understanding of atomically confined excitons around dopant ions as dominant emission centers to tune emission color in halide semiconductors, unveiling the nature of afterglow phenomena in this halide material, but could also find unique applications in optical devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.