{"title":"Large ensemble simulations indicate increases in spatial compounding of droughts and hot extremes across multiple croplands in China","authors":"Boying Lv, Zengchao Hao, Yutong Jiang, Qian Ma, Yitong Zhang","doi":"10.1016/j.gloplacha.2024.104670","DOIUrl":null,"url":null,"abstract":"The simultaneous occurrence of extremes (e.g., droughts) at multiple regions (usually termed as spatial compounding of extremes), such as croplands, may lead to large impacts on global food security. Recently, the concurrent droughts and hot extremes at a specific location, which are referred to as compound droughts and hot extremes (CDHEs), have garnered considerable attention due to the potentially amplified impacts of individual extremes. Though the spatial compounding of individual droughts or hot extremes has been assessed, the variability of the spatial compounding of CDHEs across multiple croplands in China has been lacking due to relatively short records or small sample sizes. In this study, we evaluated changes in the spatial compounding of CDHEs across multiple croplands in China, including Songnen Plain (SN), North China Plain (NC), and Sichuan Basin (SC), based on precipitation and temperature data from CN05.1 and large ensemble model (CESM1-CAM5). Results show that the frequency of CDHEs in each region will increase in future periods especially for the eastern SN, central NC, and northern SC (increase by more than 15 months), with more than 70 % of the 40 ensemble members showing a large increase. Projected changes of different cases of spatial compounding of CDHEs in three croplands (i.e., SN-NC, NC-SC, SN-SC, SN-NC-SC) showed increases from 1961–2010 to 2031–2080. In particular, higher increases in the spatial compounding of CDHEs in the NC-SC region are projected (from 0.58 to 3.73 months on average), with the ratio of non-zero event members increasing from 47.5 % to 95 %. These results underscore the high risk of the spatial compounding of extremes at multiple croplands in China in the future.","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"256 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gloplacha.2024.104670","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Large ensemble simulations indicate increases in spatial compounding of droughts and hot extremes across multiple croplands in China
The simultaneous occurrence of extremes (e.g., droughts) at multiple regions (usually termed as spatial compounding of extremes), such as croplands, may lead to large impacts on global food security. Recently, the concurrent droughts and hot extremes at a specific location, which are referred to as compound droughts and hot extremes (CDHEs), have garnered considerable attention due to the potentially amplified impacts of individual extremes. Though the spatial compounding of individual droughts or hot extremes has been assessed, the variability of the spatial compounding of CDHEs across multiple croplands in China has been lacking due to relatively short records or small sample sizes. In this study, we evaluated changes in the spatial compounding of CDHEs across multiple croplands in China, including Songnen Plain (SN), North China Plain (NC), and Sichuan Basin (SC), based on precipitation and temperature data from CN05.1 and large ensemble model (CESM1-CAM5). Results show that the frequency of CDHEs in each region will increase in future periods especially for the eastern SN, central NC, and northern SC (increase by more than 15 months), with more than 70 % of the 40 ensemble members showing a large increase. Projected changes of different cases of spatial compounding of CDHEs in three croplands (i.e., SN-NC, NC-SC, SN-SC, SN-NC-SC) showed increases from 1961–2010 to 2031–2080. In particular, higher increases in the spatial compounding of CDHEs in the NC-SC region are projected (from 0.58 to 3.73 months on average), with the ratio of non-zero event members increasing from 47.5 % to 95 %. These results underscore the high risk of the spatial compounding of extremes at multiple croplands in China in the future.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.