IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jiawei Wang, Wenqi Zhang, Xinying Yu
{"title":"One-Step Hydrothermal Carbonization of Ceratophyllum demersum under Acidic Conditions for Preparation of High-Performance Adsorbents","authors":"Jiawei Wang, Wenqi Zhang, Xinying Yu","doi":"10.1021/acs.iecr.4c02986","DOIUrl":null,"url":null,"abstract":"Large amounts of biomass waste were harvested from constructed wetlands and had to be treated and disposed of. In this study, a one-step hydrothermal carbonization (HTC) process was utilized to dispose of such biomass waste and prepare high-performance adsorption adsorbents with the assistance of sulfuric acid. The experimental parameters were optimized through response surface methodology (RSM) to achieve excellent adsorption performance for methylene blue and mass yield. Based on the RSM results, an HTC product (HTC70–2) obtained under the optimal conditions of 70 wt % sulfuric acid concentration and 2 h of reaction time had shown maximum adsorption capacity (<i>Q</i><sub>max</sub> = 384.08 mg/g) and a higher mass yield (42.90 ± 3.29%). The optimized products were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. The results showed that HTC70–2 had rough surfaces formed by nanoparticles, developed pore structures, and abundant functional groups. Moreover, the adsorption capacity of the sample decreased by only 12.8% after five adsorption–desorption cycle experiments, showing an outstanding renewable performance. FTIR, XPS, and zeta potential analysis were used to investigate the adsorption mechanisms, revealing that electrostatic attraction and surface complexation played a main role in the adsorption process.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"30 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

从建造的湿地中收获了大量生物质废物,必须对其进行处理和处置。本研究利用一步水热碳化(HTC)工艺处理此类生物质废物,并在硫酸的辅助下制备高性能吸附吸附剂。通过响应面方法(RSM)对实验参数进行了优化,以获得优异的亚甲基蓝吸附性能和质量产率。根据 RSM 的结果,在硫酸浓度为 70 wt %、反应时间为 2 h 的最佳条件下得到的 HTC 产物(HTC70-2)显示出最大的吸附能力(Qmax = 384.08 mg/g)和更高的质量产率(42.90 ± 3.29%)。对优化后的产品进行了扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和布鲁纳-艾美特-泰勒(BET)分析。结果表明,HTC70-2 具有纳米颗粒形成的粗糙表面、发达的孔隙结构和丰富的官能团。此外,经过五次吸附-解吸循环实验后,样品的吸附容量仅下降了 12.8%,显示出卓越的可再生性能。利用傅立叶变换红外光谱、XPS 和 zeta 电位分析研究了吸附机理,发现静电吸引和表面络合在吸附过程中发挥了主要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-Step Hydrothermal Carbonization of Ceratophyllum demersum under Acidic Conditions for Preparation of High-Performance Adsorbents

One-Step Hydrothermal Carbonization of Ceratophyllum demersum under Acidic Conditions for Preparation of High-Performance Adsorbents
Large amounts of biomass waste were harvested from constructed wetlands and had to be treated and disposed of. In this study, a one-step hydrothermal carbonization (HTC) process was utilized to dispose of such biomass waste and prepare high-performance adsorption adsorbents with the assistance of sulfuric acid. The experimental parameters were optimized through response surface methodology (RSM) to achieve excellent adsorption performance for methylene blue and mass yield. Based on the RSM results, an HTC product (HTC70–2) obtained under the optimal conditions of 70 wt % sulfuric acid concentration and 2 h of reaction time had shown maximum adsorption capacity (Qmax = 384.08 mg/g) and a higher mass yield (42.90 ± 3.29%). The optimized products were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. The results showed that HTC70–2 had rough surfaces formed by nanoparticles, developed pore structures, and abundant functional groups. Moreover, the adsorption capacity of the sample decreased by only 12.8% after five adsorption–desorption cycle experiments, showing an outstanding renewable performance. FTIR, XPS, and zeta potential analysis were used to investigate the adsorption mechanisms, revealing that electrostatic attraction and surface complexation played a main role in the adsorption process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信