电离层中波动暗物质的共振转换

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Carl Beadle, Andrea Caputo, Sebastian A. R. Ellis
{"title":"电离层中波动暗物质的共振转换","authors":"Carl Beadle, Andrea Caputo, Sebastian A. R. Ellis","doi":"10.1103/physrevlett.133.251001","DOIUrl":null,"url":null,"abstract":"We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range m</a:mi>DM</a:mi></a:mrow></a:msub>∼</a:mo>10</a:mn>−</a:mo>9</a:mn></a:mrow></a:msup>–</a:mi>10</a:mn>−</a:mo>8</a:mn></a:mrow></a:msup></a:mtext></a:mtext>eV</a:mi></a:math> where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This Letter opens up a promising way of testing hitherto unexplored parameter space that could be further improved with a dedicated instrument. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"64 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant Conversion of Wave Dark Matter in the Ionosphere\",\"authors\":\"Carl Beadle, Andrea Caputo, Sebastian A. R. Ellis\",\"doi\":\"10.1103/physrevlett.133.251001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range m</a:mi>DM</a:mi></a:mrow></a:msub>∼</a:mo>10</a:mn>−</a:mo>9</a:mn></a:mrow></a:msup>–</a:mi>10</a:mn>−</a:mo>8</a:mn></a:mrow></a:msup></a:mtext></a:mtext>eV</a:mi></a:math> where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This Letter opens up a promising way of testing hitherto unexplored parameter space that could be further improved with a dedicated instrument. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.251001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.251001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑共振波状暗物质在地球电离层转化为低频无线电波。当暗物质质量和等离子体频率重合时,共振转换就会发生,在mDM ~ 10−9-10−8eV范围内最适合这种方法。由于暗物质的非相对论性和地球电离层的典型变分尺度,标准的线性化方法不适合计算暗物质的转换。因此,我们解决了二阶边值问题,有效地将电离层框架为充满位置变化等离子体的驱动腔。以产生的无线电波为目标的电小型偶极子天线对相关质量范围内的暗光子和轴子样粒子暗物质的灵敏度可以提高几个数量级。这封信开辟了一种有希望的方法来测试迄今为止尚未开发的参数空间,可以通过专用仪器进一步改进。2024年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonant Conversion of Wave Dark Matter in the Ionosphere
We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range mDM∼10−9–10−8eV where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This Letter opens up a promising way of testing hitherto unexplored parameter space that could be further improved with a dedicated instrument. Published by the American Physical Society 2024
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信