{"title":"Non-covalent in situ self-assembly of fruit peel waste into eco-friendly pectocellulosic bioplastics with high strength, flexibility and processability properties","authors":"Shikai Zhang, Houshen Li, Bowen Zhang, Shiyun Ai, Yang Shan, Shenghua Ding","doi":"10.1016/j.cej.2024.158697","DOIUrl":null,"url":null,"abstract":"Converting fruit peel wastes into degradable bioplastics has brought dawn to solve the severe plastic pollution and inefficient organic food waste management. However, it remains a challenge to convert peel wastes into bioplastics without decomposing their biocomponents. Furthermore, most of the bioplastics currently being researched have poor performance, especially in terms of trade-offing high strength, toughness, and good processability. Here, we utilize a noncovalent-mediated design to convert peel waste into pectocellulosic bioplastic that features the <em>in situ</em> ordered self-assembly of cellulose and pectin in the peel into a structure similar to a carboxylic acid dimer <em>via</em> hydrogen bonding. Benefiting from efficient energy dissipation mechanisms and reversible hydrogen bonding interactions, pectocellulosic bioplastics exhibit excellent mechanical properties (superior to most petrochemical-based and bio-based plastic materials), and can be molded into 2D/3D shapes or reprocessed into new plastics, realizing a combination of high strength (50.5 MPa), toughness (5.1 MJ/m<sup>3</sup>) and good processability. These bioplastics also combine biosafety (48 h cell viability > 85 %), biodegradability, and durability. Based on these characteristics, these pectocellulosic bioplastics can be considered as a candidate for petrochemical plastics, particularly suitable for some sensitive applications such as food inner packaging. Excitingly, the universality of this strategy in a variety of peel wastes has been verified. This work highlights the transformative potential of converting peel waste into valuable materials, providing a sustainable solution to plastic pollution and organic waste management.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"114 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158697","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Non-covalent in situ self-assembly of fruit peel waste into eco-friendly pectocellulosic bioplastics with high strength, flexibility and processability properties
Converting fruit peel wastes into degradable bioplastics has brought dawn to solve the severe plastic pollution and inefficient organic food waste management. However, it remains a challenge to convert peel wastes into bioplastics without decomposing their biocomponents. Furthermore, most of the bioplastics currently being researched have poor performance, especially in terms of trade-offing high strength, toughness, and good processability. Here, we utilize a noncovalent-mediated design to convert peel waste into pectocellulosic bioplastic that features the in situ ordered self-assembly of cellulose and pectin in the peel into a structure similar to a carboxylic acid dimer via hydrogen bonding. Benefiting from efficient energy dissipation mechanisms and reversible hydrogen bonding interactions, pectocellulosic bioplastics exhibit excellent mechanical properties (superior to most petrochemical-based and bio-based plastic materials), and can be molded into 2D/3D shapes or reprocessed into new plastics, realizing a combination of high strength (50.5 MPa), toughness (5.1 MJ/m3) and good processability. These bioplastics also combine biosafety (48 h cell viability > 85 %), biodegradability, and durability. Based on these characteristics, these pectocellulosic bioplastics can be considered as a candidate for petrochemical plastics, particularly suitable for some sensitive applications such as food inner packaging. Excitingly, the universality of this strategy in a variety of peel wastes has been verified. This work highlights the transformative potential of converting peel waste into valuable materials, providing a sustainable solution to plastic pollution and organic waste management.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.