通过在 Cu2ZnSn(S,Se)4 中掺杂 Ag 并用退火 In0.01Cd0.99S 替代 CdS,实现高效 Cu2ZnSn(S,Se)4 太阳能电池

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Ding Ma , Mengge Li , Bin Yao , Yongfeng Li , Zhanhui Ding , Hongmei Luan , Chengjun Zhu , Jiayong Zhang , Chunkai Wang
{"title":"通过在 Cu2ZnSn(S,Se)4 中掺杂 Ag 并用退火 In0.01Cd0.99S 替代 CdS,实现高效 Cu2ZnSn(S,Se)4 太阳能电池","authors":"Ding Ma ,&nbsp;Mengge Li ,&nbsp;Bin Yao ,&nbsp;Yongfeng Li ,&nbsp;Zhanhui Ding ,&nbsp;Hongmei Luan ,&nbsp;Chengjun Zhu ,&nbsp;Jiayong Zhang ,&nbsp;Chunkai Wang","doi":"10.1016/j.cej.2024.158736","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the performance of Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> (CZTSSe) solar cells, a strategy is proposed to replace CdS in traditional CZTSSe solar cells with In-doped CdS (In<sub>x</sub>Cd<sub>1−x</sub>S) unannealed and annealed and to substitute Ag doped CZTSSe (CAZTSSe) for CZTSSe in this work. It is found that In doping in CdS can increase the electron density (<em>n<sub>e</sub></em>) of CdS and incident light passing through the buffer layer (I<sub>(buffer)</sub>) when doping atomic ratio x = 0.01. When replacing the CdS buffer layer with In<sub>0.01</sub>Cd<sub>0.99</sub>S, the power conversion efficiency (PCE) of CAZTSSe solar cell increased from 10.21 % to 10.62 % without an anti-reflection layer. The improvement in the PCE is mainly attributed to the increase in photogenerated current density (<em>J<sub>L</sub></em>), which results from the In doping increase I<sub>(buffer)</sub> and expands the width of the depletion region (<em>W<sub>d</sub></em>) by increasing <em>n<sub>e</sub></em> of CdS. When replacing the CdS with annealed In<sub>0.01</sub>Cd<sub>0.99</sub>S, the PCE of CAZTSSe solar cell increases further from 10.62 % to 12.12 % without an anti-reflection layer. The enhancement in PCE is mainly due to the decrease in reverse saturated current density (<em>J<sub>0</sub></em>) and series resistance (<em>R<sub>s</sub></em>). It is demonstrated that the decrease in <em>J<sub>0</sub></em> stems from that the annealing promotes the migration of In of In<sub>0.01</sub>Cd<sub>0.99</sub>S towards the CAZTSSe surface, which passivates defects at the In<sub>0.01</sub>Cd<sub>0.99</sub>S/CAZTSSe interface, thereby decreasing interface recombination. While the decrease in <em>R<sub>s</sub></em> is attributed to that the diffusion of the In improves the crystallinity of CAZTSSe. It is also found that PCE increase from CZTSSe solar cells to CAZTSSe solar cells when the buffer layer is CdS is smaller than PCE increase when the buffer layer is annealed In<sub>0.01</sub>Cd<sub>0.99</sub>S.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"504 ","pages":"Article 158736"},"PeriodicalIF":13.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving high-efficiency Cu2ZnSn(S,Se)4 solar cells by Ag doping in Cu2ZnSn(S,Se)4 and substituting annealed In0.01Cd0.99S for CdS\",\"authors\":\"Ding Ma ,&nbsp;Mengge Li ,&nbsp;Bin Yao ,&nbsp;Yongfeng Li ,&nbsp;Zhanhui Ding ,&nbsp;Hongmei Luan ,&nbsp;Chengjun Zhu ,&nbsp;Jiayong Zhang ,&nbsp;Chunkai Wang\",\"doi\":\"10.1016/j.cej.2024.158736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the performance of Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> (CZTSSe) solar cells, a strategy is proposed to replace CdS in traditional CZTSSe solar cells with In-doped CdS (In<sub>x</sub>Cd<sub>1−x</sub>S) unannealed and annealed and to substitute Ag doped CZTSSe (CAZTSSe) for CZTSSe in this work. It is found that In doping in CdS can increase the electron density (<em>n<sub>e</sub></em>) of CdS and incident light passing through the buffer layer (I<sub>(buffer)</sub>) when doping atomic ratio x = 0.01. When replacing the CdS buffer layer with In<sub>0.01</sub>Cd<sub>0.99</sub>S, the power conversion efficiency (PCE) of CAZTSSe solar cell increased from 10.21 % to 10.62 % without an anti-reflection layer. The improvement in the PCE is mainly attributed to the increase in photogenerated current density (<em>J<sub>L</sub></em>), which results from the In doping increase I<sub>(buffer)</sub> and expands the width of the depletion region (<em>W<sub>d</sub></em>) by increasing <em>n<sub>e</sub></em> of CdS. When replacing the CdS with annealed In<sub>0.01</sub>Cd<sub>0.99</sub>S, the PCE of CAZTSSe solar cell increases further from 10.62 % to 12.12 % without an anti-reflection layer. The enhancement in PCE is mainly due to the decrease in reverse saturated current density (<em>J<sub>0</sub></em>) and series resistance (<em>R<sub>s</sub></em>). It is demonstrated that the decrease in <em>J<sub>0</sub></em> stems from that the annealing promotes the migration of In of In<sub>0.01</sub>Cd<sub>0.99</sub>S towards the CAZTSSe surface, which passivates defects at the In<sub>0.01</sub>Cd<sub>0.99</sub>S/CAZTSSe interface, thereby decreasing interface recombination. While the decrease in <em>R<sub>s</sub></em> is attributed to that the diffusion of the In improves the crystallinity of CAZTSSe. It is also found that PCE increase from CZTSSe solar cells to CAZTSSe solar cells when the buffer layer is CdS is smaller than PCE increase when the buffer layer is annealed In<sub>0.01</sub>Cd<sub>0.99</sub>S.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"504 \",\"pages\":\"Article 158736\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894724102276\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724102276","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高 Cu2ZnSn(S,Se)4(CZTSSe)太阳能电池的性能,本文提出了一种策略,即用未经退火和退火的掺 In CdS(InxCd1-xS)替代传统 CZTSSe 太阳能电池中的 CdS,并用掺 Ag CZTSSe(CAZTSSe)替代 CZTSSe。研究发现,当掺杂原子比 x = 0.01 时,在 CdS 中掺杂 In 可以增加 CdS 的电子密度(ne)和通过缓冲层的入射光(I(buffer))。当用 In0.01Cd0.99S 取代 CdS 缓冲层时,CAZTSSe 太阳能电池的功率转换效率(PCE)从 10.21% 提高到了 10.62%,且不含抗反射层。PCE 的提高主要归因于光生电流密度 (JL) 的增加,这是因为掺入 In 增加了 I(缓冲),并通过增加 CdS 的 ne 扩大了耗尽区的宽度 (Wd)。当用退火的 In0.01Cd0.99S 取代 CdS 时,CAZTSSe 太阳能电池的 PCE 从 10.62% 进一步提高到 12.12%,而无需抗反射层。PCE 的提高主要是由于反向饱和电流密度 (J0) 和串联电阻 (Rs) 的降低。研究表明,J0 的降低是由于退火促进了 In0.01Cd0.99S 的 In 向 CAZTSSe 表面迁移,从而钝化了 In0.01Cd0.99S/CAZTSSe 界面的缺陷,减少了界面重组。而 Rs 的减少是由于 In 的扩散提高了 CAZTSSe 的结晶度。研究还发现,当缓冲层为 CdS 时,从 CZTSSe 太阳能电池到 CAZTSSe 太阳能电池的 PCE 增加值小于缓冲层为退火 In0.01Cd0.99S 时的 PCE 增加值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving high-efficiency Cu2ZnSn(S,Se)4 solar cells by Ag doping in Cu2ZnSn(S,Se)4 and substituting annealed In0.01Cd0.99S for CdS

Achieving high-efficiency Cu2ZnSn(S,Se)4 solar cells by Ag doping in Cu2ZnSn(S,Se)4 and substituting annealed In0.01Cd0.99S for CdS

Achieving high-efficiency Cu2ZnSn(S,Se)4 solar cells by Ag doping in Cu2ZnSn(S,Se)4 and substituting annealed In0.01Cd0.99S for CdS
To improve the performance of Cu2ZnSn(S, Se)4 (CZTSSe) solar cells, a strategy is proposed to replace CdS in traditional CZTSSe solar cells with In-doped CdS (InxCd1−xS) unannealed and annealed and to substitute Ag doped CZTSSe (CAZTSSe) for CZTSSe in this work. It is found that In doping in CdS can increase the electron density (ne) of CdS and incident light passing through the buffer layer (I(buffer)) when doping atomic ratio x = 0.01. When replacing the CdS buffer layer with In0.01Cd0.99S, the power conversion efficiency (PCE) of CAZTSSe solar cell increased from 10.21 % to 10.62 % without an anti-reflection layer. The improvement in the PCE is mainly attributed to the increase in photogenerated current density (JL), which results from the In doping increase I(buffer) and expands the width of the depletion region (Wd) by increasing ne of CdS. When replacing the CdS with annealed In0.01Cd0.99S, the PCE of CAZTSSe solar cell increases further from 10.62 % to 12.12 % without an anti-reflection layer. The enhancement in PCE is mainly due to the decrease in reverse saturated current density (J0) and series resistance (Rs). It is demonstrated that the decrease in J0 stems from that the annealing promotes the migration of In of In0.01Cd0.99S towards the CAZTSSe surface, which passivates defects at the In0.01Cd0.99S/CAZTSSe interface, thereby decreasing interface recombination. While the decrease in Rs is attributed to that the diffusion of the In improves the crystallinity of CAZTSSe. It is also found that PCE increase from CZTSSe solar cells to CAZTSSe solar cells when the buffer layer is CdS is smaller than PCE increase when the buffer layer is annealed In0.01Cd0.99S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信