{"title":"What Do Mismatch Negativity (MMN) Responses Tell Us About Tinnitus?","authors":"Ekaterina A Yukhnovich, Kai Alter, William Sedley","doi":"10.1007/s10162-024-00970-1","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the heterogeneous causes, symptoms and associated comorbidities with tinnitus, there remains an unmet need for a clear biomarker of tinnitus presence. Previous research has suggested a \"final pathway\" of tinnitus presence, which occurs regardless of the specific mechanisms that resulted in alterations of auditory predictions and, eventually, tinnitus perception. Predictive inference mechanisms have been proposed as the possible basis for this final unifying pathway. A commonly used measure of prediction violation is mismatch negativity (MMN), an electrical potential generated in response to most stimuli that violate an established regularity. This narrative review discusses 16 studies comparing MMN between tinnitus and non-tinnitus groups. Methods varied considerably, including type of deviant, type of paradigm and carrier frequency. A minority of studies matched groups for age, sex and hearing, with few measuring hyperacusis. Frequency deviants were the most widely studied; at frequencies remote from tinnitus, MMN was consistently smaller in tinnitus groups, though hyperacusis or altered distress or attention could not be ruled out as explanatory factors. Few studies have used tinnitus-related frequencies; these showed larger MMN to upward frequency deviants above the tinnitus frequency, and larger MMN to upward intensity deviants at or close to the tinnitus frequency. However, the latter appears a correlate of hyperacusis rather than tinnitus, and tinnitus groups without hyperacusis instead show larger MMN to downward intensity deviants than controls. Other factors that affect MMN amplitudes included age, attention, and the specific characteristics of the range of stimuli across a particular experiment paradigm. As such, MMN cannot presently be considered a specific biomarker of tinnitus, but showed potential to objectively characterise a number of auditory processing traits relevant to tinnitus and hyperacusis.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-024-00970-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
What Do Mismatch Negativity (MMN) Responses Tell Us About Tinnitus?
Due to the heterogeneous causes, symptoms and associated comorbidities with tinnitus, there remains an unmet need for a clear biomarker of tinnitus presence. Previous research has suggested a "final pathway" of tinnitus presence, which occurs regardless of the specific mechanisms that resulted in alterations of auditory predictions and, eventually, tinnitus perception. Predictive inference mechanisms have been proposed as the possible basis for this final unifying pathway. A commonly used measure of prediction violation is mismatch negativity (MMN), an electrical potential generated in response to most stimuli that violate an established regularity. This narrative review discusses 16 studies comparing MMN between tinnitus and non-tinnitus groups. Methods varied considerably, including type of deviant, type of paradigm and carrier frequency. A minority of studies matched groups for age, sex and hearing, with few measuring hyperacusis. Frequency deviants were the most widely studied; at frequencies remote from tinnitus, MMN was consistently smaller in tinnitus groups, though hyperacusis or altered distress or attention could not be ruled out as explanatory factors. Few studies have used tinnitus-related frequencies; these showed larger MMN to upward frequency deviants above the tinnitus frequency, and larger MMN to upward intensity deviants at or close to the tinnitus frequency. However, the latter appears a correlate of hyperacusis rather than tinnitus, and tinnitus groups without hyperacusis instead show larger MMN to downward intensity deviants than controls. Other factors that affect MMN amplitudes included age, attention, and the specific characteristics of the range of stimuli across a particular experiment paradigm. As such, MMN cannot presently be considered a specific biomarker of tinnitus, but showed potential to objectively characterise a number of auditory processing traits relevant to tinnitus and hyperacusis.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.