Georgia P Wong, Sunhild Hartmann, Olivia Nonn, Ping Cannon, Tuong-Vi Nguyen, Manju Kandel, Natasha de Alwis, Ciara N Murphy, Natasha Pritchard, Ralf Dechend, Natalie J Hannan, Stephen Tong, David G Simmons, Tu'uhevaha J Kaitu'u-Lino
{"title":"子痫前期干细胞标志物 LGR5、LGR4 及其直接信号伴侣出现失调。","authors":"Georgia P Wong, Sunhild Hartmann, Olivia Nonn, Ping Cannon, Tuong-Vi Nguyen, Manju Kandel, Natasha de Alwis, Ciara N Murphy, Natasha Pritchard, Ralf Dechend, Natalie J Hannan, Stephen Tong, David G Simmons, Tu'uhevaha J Kaitu'u-Lino","doi":"10.1007/s12015-024-10831-2","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem Cell Markers LGR5, LGR4 and Their Immediate Signalling Partners are Dysregulated in Preeclampsia.\",\"authors\":\"Georgia P Wong, Sunhild Hartmann, Olivia Nonn, Ping Cannon, Tuong-Vi Nguyen, Manju Kandel, Natasha de Alwis, Ciara N Murphy, Natasha Pritchard, Ralf Dechend, Natalie J Hannan, Stephen Tong, David G Simmons, Tu'uhevaha J Kaitu'u-Lino\",\"doi\":\"10.1007/s12015-024-10831-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10831-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10831-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Stem Cell Markers LGR5, LGR4 and Their Immediate Signalling Partners are Dysregulated in Preeclampsia.
Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.