IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Christian Liebsch, Peter Obid, Morten Vogt, Benedikt Schlager, Hans-Joachim Wilke
{"title":"Spinal instrumentation length affects adjacent segment range of motion and intradiscal pressure.","authors":"Christian Liebsch, Peter Obid, Morten Vogt, Benedikt Schlager, Hans-Joachim Wilke","doi":"10.1038/s41598-024-82132-0","DOIUrl":null,"url":null,"abstract":"<p><p>Scoliosis instrumentation length depends on the type and degree of deformity and the individual preference of the surgeon. This in vitro study aimed to explore effects of increasing instrumentation length on adjacent segment mobility and intervertebral disc loading. Six fresh frozen human spine specimens (C7-sacrum) with entire rib cage from young adult donors (26-45 years) were loaded with pure moments of 5 Nm. Range of motion (ROM) of all segments was determined using optical motion tracking. Lumbar intradiscal pressure (IDP) was measured using flexible pressure sensors from L1 to L5. The specimens were tested in two groups with increasing posterior instrumentation length in proximal (group 1) and distal direction (group 2). Significant (p < 0.05) adjacent segment ROM increases compared to the condition without any instrumentation and compared to other instrumentations were primarily found proximally to the instrumentation in lateral bending. IDP significantly (p < 0.05) increased in flexion in the distal adjacent segment for T4-L1 instrumentation and by up to 550% at instrumented levels compared to the condition without instrumentation. These findings may explain clinical complications such as adjacent segment disease and associated proximal and distal junctional kyphosis. To reduce loads on adjacent segments, instrumentation should therefore be applied as short as reasonable.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30496"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82132-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊柱侧弯器械长度取决于畸形的类型和程度以及外科医生的个人偏好。这项体外研究旨在探讨增加器械长度对邻近节段活动度和椎间盘负荷的影响。六块新鲜冷冻的人体脊柱标本(C7-骶骨)连同整个肋骨均来自年轻的成年捐献者(26-45 岁),加载的纯力矩为 5 牛米。所有节段的运动范围(ROM)都是通过光学运动跟踪测定的。腰椎椎间盘内压力(IDP)是通过从 L1 到 L5 的柔性压力传感器测量的。样本分为两组进行测试,近端(第 1 组)和远端(第 2 组)的后方器械长度不断增加。结果显示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinal instrumentation length affects adjacent segment range of motion and intradiscal pressure.

Scoliosis instrumentation length depends on the type and degree of deformity and the individual preference of the surgeon. This in vitro study aimed to explore effects of increasing instrumentation length on adjacent segment mobility and intervertebral disc loading. Six fresh frozen human spine specimens (C7-sacrum) with entire rib cage from young adult donors (26-45 years) were loaded with pure moments of 5 Nm. Range of motion (ROM) of all segments was determined using optical motion tracking. Lumbar intradiscal pressure (IDP) was measured using flexible pressure sensors from L1 to L5. The specimens were tested in two groups with increasing posterior instrumentation length in proximal (group 1) and distal direction (group 2). Significant (p < 0.05) adjacent segment ROM increases compared to the condition without any instrumentation and compared to other instrumentations were primarily found proximally to the instrumentation in lateral bending. IDP significantly (p < 0.05) increased in flexion in the distal adjacent segment for T4-L1 instrumentation and by up to 550% at instrumented levels compared to the condition without instrumentation. These findings may explain clinical complications such as adjacent segment disease and associated proximal and distal junctional kyphosis. To reduce loads on adjacent segments, instrumentation should therefore be applied as short as reasonable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信