二维数字FIR微分器的分析设计与多相实现技术。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-12-09 DOI:10.3390/s24237870
Radu Matei, Doru Florin Chiper
{"title":"二维数字FIR微分器的分析设计与多相实现技术。","authors":"Radu Matei, Doru Florin Chiper","doi":"10.3390/s24237870","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, an analytical method in the frequency domain is proposed for the design of two-dimensional digital FIR differentiators. This technique uses an approximation based on two methods: the Chebyshev series and the Fourier series, which, finally, lead to a trigonometric polynomial, which is a remarkably precise approximation of the transfer function of the ideal differentiator. The digital differentiator is applied to three test images, one greyscale image and two binary images, and simulation results show its performance in the processing task. Also, based on the fact that this 2D differentiator is separable on the two frequency axes, we propose an efficient implementation at the system level, using polyphase filtering. The designed digital differentiator is very accurate and efficient, having a high level of parallelism and reduced computational complexity.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644837/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analytical Design and Polyphase Implementation Technique for 2D Digital FIR Differentiators.\",\"authors\":\"Radu Matei, Doru Florin Chiper\",\"doi\":\"10.3390/s24237870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, an analytical method in the frequency domain is proposed for the design of two-dimensional digital FIR differentiators. This technique uses an approximation based on two methods: the Chebyshev series and the Fourier series, which, finally, lead to a trigonometric polynomial, which is a remarkably precise approximation of the transfer function of the ideal differentiator. The digital differentiator is applied to three test images, one greyscale image and two binary images, and simulation results show its performance in the processing task. Also, based on the fact that this 2D differentiator is separable on the two frequency axes, we propose an efficient implementation at the system level, using polyphase filtering. The designed digital differentiator is very accurate and efficient, having a high level of parallelism and reduced computational complexity.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 23\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11644837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24237870\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24237870","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种二维数字FIR微分器的频域解析设计方法。这种技术使用了基于两种方法的近似:切比雪夫级数和傅立叶级数,最后,这导致了一个三角多项式,它是理想微分器传递函数的一个非常精确的近似。将数字微分器应用于三幅测试图像,一幅灰度图像和两幅二值图像,仿真结果表明了它在处理任务中的性能。此外,基于该二维微分器在两个频率轴上可分离的事实,我们提出了在系统级使用多相滤波的有效实现。所设计的数字微分器精度高,效率高,并行度高,计算复杂度低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Design and Polyphase Implementation Technique for 2D Digital FIR Differentiators.

In this work, an analytical method in the frequency domain is proposed for the design of two-dimensional digital FIR differentiators. This technique uses an approximation based on two methods: the Chebyshev series and the Fourier series, which, finally, lead to a trigonometric polynomial, which is a remarkably precise approximation of the transfer function of the ideal differentiator. The digital differentiator is applied to three test images, one greyscale image and two binary images, and simulation results show its performance in the processing task. Also, based on the fact that this 2D differentiator is separable on the two frequency axes, we propose an efficient implementation at the system level, using polyphase filtering. The designed digital differentiator is very accurate and efficient, having a high level of parallelism and reduced computational complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信