Jun Li, Wan Chen, Xiaoqiong Zhu, Baoguo Zang, Cong Zhang, Hengxiao Hu, Ming Zhang, Wenbao Lei
{"title":"智能电动汽车充电基础设施节能可靠的双闭环直流控制系统。","authors":"Jun Li, Wan Chen, Xiaoqiong Zhu, Baoguo Zang, Cong Zhang, Hengxiao Hu, Ming Zhang, Wenbao Lei","doi":"10.1371/journal.pone.0315363","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative dual closed-loop DC control system for intelligent electric vehicle (EV) charging infrastructure, designed to address the challenges of high power factor, low harmonic pollution, and high efficiency in EV charging applications. The research implements a three-level Pulse Width Modulation (PWM) rectifier with a diode-clamped topology and Insulated-Gate Bipolar Transistors (IGBTs), achieving a power factor of 0.99, a total harmonic distortion (THD) of 1.12%, and an efficiency of 95% through rigorous simulation. These results surpass those of wireless charging technology and bidirectional DC-DC converters, demonstrating the system's superiority in key performance metrics. The dual closed-loop strategy, integrating a current inner loop and a voltage outer loop, ensures rapid response and high steady-state accuracy, with the PI regulator effectively managing phase coupling for balanced power flow. The voltage outer loop's stability is critical for the system's reliable operation. The study also discusses the challenges in the dynamic variation of midpoint source current and proposes future work to increase the system's switching frequency, improve anti-interference capabilities, and enhance the accuracy of the sampling process. Advanced computational intelligence and optimization techniques are highlighted as essential for tackling the complex challenges of modern EV charging systems. The study contributes to the development of efficient, secure technology for the next generation of wireless networks and power systems, providing a robust empirical basis for the proposed control strategies through MATLAB/Simulink simulations. This research sets a solid foundation for the performance assessment of EV charging systems, offering high-performance, environmentally friendly, and economically viable solutions for sustainable transportation.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0315363"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient and reliable dual closed-loop DC control system for intelligent electric vehicle charging infrastructure.\",\"authors\":\"Jun Li, Wan Chen, Xiaoqiong Zhu, Baoguo Zang, Cong Zhang, Hengxiao Hu, Ming Zhang, Wenbao Lei\",\"doi\":\"10.1371/journal.pone.0315363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an innovative dual closed-loop DC control system for intelligent electric vehicle (EV) charging infrastructure, designed to address the challenges of high power factor, low harmonic pollution, and high efficiency in EV charging applications. The research implements a three-level Pulse Width Modulation (PWM) rectifier with a diode-clamped topology and Insulated-Gate Bipolar Transistors (IGBTs), achieving a power factor of 0.99, a total harmonic distortion (THD) of 1.12%, and an efficiency of 95% through rigorous simulation. These results surpass those of wireless charging technology and bidirectional DC-DC converters, demonstrating the system's superiority in key performance metrics. The dual closed-loop strategy, integrating a current inner loop and a voltage outer loop, ensures rapid response and high steady-state accuracy, with the PI regulator effectively managing phase coupling for balanced power flow. The voltage outer loop's stability is critical for the system's reliable operation. The study also discusses the challenges in the dynamic variation of midpoint source current and proposes future work to increase the system's switching frequency, improve anti-interference capabilities, and enhance the accuracy of the sampling process. Advanced computational intelligence and optimization techniques are highlighted as essential for tackling the complex challenges of modern EV charging systems. The study contributes to the development of efficient, secure technology for the next generation of wireless networks and power systems, providing a robust empirical basis for the proposed control strategies through MATLAB/Simulink simulations. This research sets a solid foundation for the performance assessment of EV charging systems, offering high-performance, environmentally friendly, and economically viable solutions for sustainable transportation.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 12\",\"pages\":\"e0315363\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0315363\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315363","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Energy-efficient and reliable dual closed-loop DC control system for intelligent electric vehicle charging infrastructure.
This study presents an innovative dual closed-loop DC control system for intelligent electric vehicle (EV) charging infrastructure, designed to address the challenges of high power factor, low harmonic pollution, and high efficiency in EV charging applications. The research implements a three-level Pulse Width Modulation (PWM) rectifier with a diode-clamped topology and Insulated-Gate Bipolar Transistors (IGBTs), achieving a power factor of 0.99, a total harmonic distortion (THD) of 1.12%, and an efficiency of 95% through rigorous simulation. These results surpass those of wireless charging technology and bidirectional DC-DC converters, demonstrating the system's superiority in key performance metrics. The dual closed-loop strategy, integrating a current inner loop and a voltage outer loop, ensures rapid response and high steady-state accuracy, with the PI regulator effectively managing phase coupling for balanced power flow. The voltage outer loop's stability is critical for the system's reliable operation. The study also discusses the challenges in the dynamic variation of midpoint source current and proposes future work to increase the system's switching frequency, improve anti-interference capabilities, and enhance the accuracy of the sampling process. Advanced computational intelligence and optimization techniques are highlighted as essential for tackling the complex challenges of modern EV charging systems. The study contributes to the development of efficient, secure technology for the next generation of wireless networks and power systems, providing a robust empirical basis for the proposed control strategies through MATLAB/Simulink simulations. This research sets a solid foundation for the performance assessment of EV charging systems, offering high-performance, environmentally friendly, and economically viable solutions for sustainable transportation.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage