Heeyoon Jang, Seok-Ki Hyeong, Byeongjin Park, Tae-Wook Kim, Sukang Bae, Sung Kyu Jang, Yonghun Kim, Seoung-Ki Lee
{"title":"Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices.","authors":"Heeyoon Jang, Seok-Ki Hyeong, Byeongjin Park, Tae-Wook Kim, Sukang Bae, Sung Kyu Jang, Yonghun Kim, Seoung-Ki Lee","doi":"10.3390/nano14231872","DOIUrl":null,"url":null,"abstract":"<p><p>Strain engineering provides an attractive approach to enhance device performance by modulating the intrinsic electrical properties of materials. This is especially applicable to 2D materials, which exhibit high sensitivity to mechanical stress. However, conventional methods, such as using polymer substrates, to apply strain have limitations in that the strain is temporary and global. Here, we introduce a novel approach to induce permanent localized strain by fabricating a stressor on SiO<sub>2</sub>/Si substrates using fiber laser irradiation, thereby enabling precise control of the surface topography. MoS<sub>2</sub> is transferred onto this stressor, which results in the application of ~0.8% tensile strain. To assess the impact of the internal strain on the operation of ReRAM devices, the flat-MoS<sub>2</sub>-based and the strained-MoS<sub>2</sub>-based devices are compared. Both devices demonstrate forming-free, bipolar, and non-volatile switching characteristics. The strained devices exhibit a 30% reduction in the operating voltage, which can be attributed to bandgap narrowing and enhanced carrier mobility. Furthermore, the strained devices exhibit nearly a two-fold improvement in endurance, presumably because of the enhanced stability from lattice release effect. These results emphasize the potential of strain engineering for advancing the performance and durability of next-generation memory devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231872","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Permanent Strain Engineering of Molybdenum Disulfide Using Laser-Driven Stressors for Energy-Efficient Resistive Switching Memory Devices.
Strain engineering provides an attractive approach to enhance device performance by modulating the intrinsic electrical properties of materials. This is especially applicable to 2D materials, which exhibit high sensitivity to mechanical stress. However, conventional methods, such as using polymer substrates, to apply strain have limitations in that the strain is temporary and global. Here, we introduce a novel approach to induce permanent localized strain by fabricating a stressor on SiO2/Si substrates using fiber laser irradiation, thereby enabling precise control of the surface topography. MoS2 is transferred onto this stressor, which results in the application of ~0.8% tensile strain. To assess the impact of the internal strain on the operation of ReRAM devices, the flat-MoS2-based and the strained-MoS2-based devices are compared. Both devices demonstrate forming-free, bipolar, and non-volatile switching characteristics. The strained devices exhibit a 30% reduction in the operating voltage, which can be attributed to bandgap narrowing and enhanced carrier mobility. Furthermore, the strained devices exhibit nearly a two-fold improvement in endurance, presumably because of the enhanced stability from lattice release effect. These results emphasize the potential of strain engineering for advancing the performance and durability of next-generation memory devices.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.