Jie Zhang, Qian Chen, Fan Yang, Ying Wang, Jun Xiao, Hongxia Ding, Qiang Ma, Qian Deng, Yun Jiang
{"title":"Utilization of the <i>Dasypyrum</i> genus for genetic improvement of wheat.","authors":"Jie Zhang, Qian Chen, Fan Yang, Ying Wang, Jun Xiao, Hongxia Ding, Qiang Ma, Qian Deng, Yun Jiang","doi":"10.1007/s11032-024-01512-6","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Dasypyrum</i> genus species are found predominantly in the Mediterranean region. They possess an array of agronomically essential traits, such as resistance to biotic and abiotic stresses, high protein content, and better grain quality, and are thus a valuable genetic resources for wheat improvement. In recent decades, there has been significant progress in the development of wheat-<i>Dasypyrum</i> genetic stocks, leading to the successful transfer of beneficial genes from <i>Dasypyrum</i> into cultivated wheat. Notably, the chromosome-scale genome assembly of <i>Dasypyrum villosum</i> was preliminarily completed in 2023, laying the groundwork for functional genomics research and wheat-<i>Dasypyrum</i> introgression breeding. This article aims to provide a concise overview of the relationships between different species belonging to the <i>Dasypyrum</i> genus, the development of wheat-<i>Dasypyrum</i> genetic stocks, the desirable genes derived from <i>Dasypyrum</i>, and the molecular and cytogenetic markers that could be used to identify <i>Dasypyrum</i> chromatins. These insights can assist wheat breeders in utilizing the <i>Dasypyrum</i> genus in future wheat breeding endeavors.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"44 12","pages":"82"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01512-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Utilization of the Dasypyrum genus for genetic improvement of wheat.
The Dasypyrum genus species are found predominantly in the Mediterranean region. They possess an array of agronomically essential traits, such as resistance to biotic and abiotic stresses, high protein content, and better grain quality, and are thus a valuable genetic resources for wheat improvement. In recent decades, there has been significant progress in the development of wheat-Dasypyrum genetic stocks, leading to the successful transfer of beneficial genes from Dasypyrum into cultivated wheat. Notably, the chromosome-scale genome assembly of Dasypyrum villosum was preliminarily completed in 2023, laying the groundwork for functional genomics research and wheat-Dasypyrum introgression breeding. This article aims to provide a concise overview of the relationships between different species belonging to the Dasypyrum genus, the development of wheat-Dasypyrum genetic stocks, the desirable genes derived from Dasypyrum, and the molecular and cytogenetic markers that could be used to identify Dasypyrum chromatins. These insights can assist wheat breeders in utilizing the Dasypyrum genus in future wheat breeding endeavors.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.