通过调节碱离子的晶格占位来优化上转换发光的缺陷介导能量转移机制。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-12-07 DOI:10.3390/nano14231969
Rongyao Gao, Yuqian Li, Yuhang Zhang, Limin Fu, Luoyuan Li
{"title":"通过调节碱离子的晶格占位来优化上转换发光的缺陷介导能量转移机制。","authors":"Rongyao Gao, Yuqian Li, Yuhang Zhang, Limin Fu, Luoyuan Li","doi":"10.3390/nano14231969","DOIUrl":null,"url":null,"abstract":"<p><p>The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability of materials can be effectively improved by adjusting lattice defects in crystals. We systematically studied the effect of doping ions on the energy transfer upconversion mechanism in different defect crystals by changing the matrix alkali metal ions. Meanwhile, the influence mechanism of crystal defect distribution on luminescence performance is explored by adjusting the ratio of Na-Li. The PL spectra indicate that changing the alkaline ions significantly affects the luminescence performance and efficiency of UCNPs. The change in ion radius leads to substitution or gap changes in the main lattice, which may alter the symmetry and strength of the crystal field around doped RE ions, thereby altering the UCL performance. Additionally, we demonstrated the imaging capabilities of the synthesized upconversion nanoparticles (UCNPs) in cellular environments using fluorescence microscopy. The results revealed that Na<sub>0.9</sub>Li<sub>0.1</sub>LuF<sub>4</sub>-Yb, Er nanoparticles exhibited significantly enhanced fluorescence intensity in cell imaging compared to other compositions. We further investigated the mechanism by which structural defects formed by doping ions in UCNPs with different alkali metals affect energy transfer upconversion (ETU). This work emphasizes the importance of defect regulation in the ETU mechanism to improve the limitations of crystal structure on the luminescence performance and promote the future application of upconversion nanomaterials, which will provide important theoretical references for the exploration of high-performance luminescent materials in the future.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-Mediated Energy Transfer Mechanism by Modulating Lattice Occupancy of Alkali Ions for the Optimization of Upconversion Luminescence.\",\"authors\":\"Rongyao Gao, Yuqian Li, Yuhang Zhang, Limin Fu, Luoyuan Li\",\"doi\":\"10.3390/nano14231969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability of materials can be effectively improved by adjusting lattice defects in crystals. We systematically studied the effect of doping ions on the energy transfer upconversion mechanism in different defect crystals by changing the matrix alkali metal ions. Meanwhile, the influence mechanism of crystal defect distribution on luminescence performance is explored by adjusting the ratio of Na-Li. The PL spectra indicate that changing the alkaline ions significantly affects the luminescence performance and efficiency of UCNPs. The change in ion radius leads to substitution or gap changes in the main lattice, which may alter the symmetry and strength of the crystal field around doped RE ions, thereby altering the UCL performance. Additionally, we demonstrated the imaging capabilities of the synthesized upconversion nanoparticles (UCNPs) in cellular environments using fluorescence microscopy. The results revealed that Na<sub>0.9</sub>Li<sub>0.1</sub>LuF<sub>4</sub>-Yb, Er nanoparticles exhibited significantly enhanced fluorescence intensity in cell imaging compared to other compositions. We further investigated the mechanism by which structural defects formed by doping ions in UCNPs with different alkali metals affect energy transfer upconversion (ETU). This work emphasizes the importance of defect regulation in the ETU mechanism to improve the limitations of crystal structure on the luminescence performance and promote the future application of upconversion nanomaterials, which will provide important theoretical references for the exploration of high-performance luminescent materials in the future.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 23\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14231969\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231969","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect-Mediated Energy Transfer Mechanism by Modulating Lattice Occupancy of Alkali Ions for the Optimization of Upconversion Luminescence.

The performance optimization of photoluminescent (PL) materials is a hot topic in the field of applied materials research. There are many different crystal defects in photoluminescent materials, which can have a significant impact on their optical properties. The luminescent properties and chemical stability of materials can be effectively improved by adjusting lattice defects in crystals. We systematically studied the effect of doping ions on the energy transfer upconversion mechanism in different defect crystals by changing the matrix alkali metal ions. Meanwhile, the influence mechanism of crystal defect distribution on luminescence performance is explored by adjusting the ratio of Na-Li. The PL spectra indicate that changing the alkaline ions significantly affects the luminescence performance and efficiency of UCNPs. The change in ion radius leads to substitution or gap changes in the main lattice, which may alter the symmetry and strength of the crystal field around doped RE ions, thereby altering the UCL performance. Additionally, we demonstrated the imaging capabilities of the synthesized upconversion nanoparticles (UCNPs) in cellular environments using fluorescence microscopy. The results revealed that Na0.9Li0.1LuF4-Yb, Er nanoparticles exhibited significantly enhanced fluorescence intensity in cell imaging compared to other compositions. We further investigated the mechanism by which structural defects formed by doping ions in UCNPs with different alkali metals affect energy transfer upconversion (ETU). This work emphasizes the importance of defect regulation in the ETU mechanism to improve the limitations of crystal structure on the luminescence performance and promote the future application of upconversion nanomaterials, which will provide important theoretical references for the exploration of high-performance luminescent materials in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信