Rafał Idczak, Robert Konieczny, Wojciech Nowak, Wojciech Bartz, Michał Babij
{"title":"Effect of Dispersed ZrO<sub>2</sub> Particles on Microstructure Evolution and Superconducting Properties of Nb-Ti Alloy.","authors":"Rafał Idczak, Robert Konieczny, Wojciech Nowak, Wojciech Bartz, Michał Babij","doi":"10.3390/ma17235946","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of dispersed ZrO<sub>2</sub> particles on the microstructure evolution and the superconducting properties of a Nb-Ti alloy was investigated. The studied materials were prepared by different methods including mechanical alloying (MA) and arc-melting. The obtained samples were studied by X-ray diffraction (XRD) and vibrating-sample magnetometer (VSM). It was found that ZrO<sub>2</sub> particles can be successively introduced into an Fe-Nb matrix by MA. However, among all prepared samples with a nominal composition of Nb-47wt%Ti-5 wt% ZrO<sub>2</sub>, only the powders, which were prepared by MA of Nb-47wt%Ti and ZrO<sub>2</sub> powders, exhibit superconductivity with critical parameters comparable to those observed in pristine Nb-47wt%Ti alloy. In particular, the determined upper critical field at 0 K μ0Hc2(0) is close to 15.6(1) T. This value is slightly higher than 15.3(3) T obtained for Nb-47wt%Ti and it can be ascribed to the presence of introduced ZrO<sub>2</sub> particles in the Nb-Ti matrix.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235946","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of Dispersed ZrO2 Particles on Microstructure Evolution and Superconducting Properties of Nb-Ti Alloy.
The influence of dispersed ZrO2 particles on the microstructure evolution and the superconducting properties of a Nb-Ti alloy was investigated. The studied materials were prepared by different methods including mechanical alloying (MA) and arc-melting. The obtained samples were studied by X-ray diffraction (XRD) and vibrating-sample magnetometer (VSM). It was found that ZrO2 particles can be successively introduced into an Fe-Nb matrix by MA. However, among all prepared samples with a nominal composition of Nb-47wt%Ti-5 wt% ZrO2, only the powders, which were prepared by MA of Nb-47wt%Ti and ZrO2 powders, exhibit superconductivity with critical parameters comparable to those observed in pristine Nb-47wt%Ti alloy. In particular, the determined upper critical field at 0 K μ0Hc2(0) is close to 15.6(1) T. This value is slightly higher than 15.3(3) T obtained for Nb-47wt%Ti and it can be ascribed to the presence of introduced ZrO2 particles in the Nb-Ti matrix.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.