组氨酸限制改变了植物的发育并影响了 TOR 网络。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Amandine Guérin, Caroline Levasseur, Aline Herger, Dominik Renggli, Alexandros Georgios Sotiropoulos, Gabor Kadler, Xiaoyu Hou, Myriam Schaufelberger, Christian Meyer, Thomas Wicker, Laurent Bigler, Christoph Ringli
{"title":"组氨酸限制改变了植物的发育并影响了 TOR 网络。","authors":"Amandine Guérin, Caroline Levasseur, Aline Herger, Dominik Renggli, Alexandros Georgios Sotiropoulos, Gabor Kadler, Xiaoyu Hou, Myriam Schaufelberger, Christian Meyer, Thomas Wicker, Laurent Bigler, Christoph Ringli","doi":"10.1093/jxb/erae479","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth depends on growth regulators, nutrient availability, and amino acids levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including LRR-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root-hair specific LRX1 without the extensin domain, which anchors the protein to the cell wall, has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histidine limitation alters plant development and influences the TOR network.\",\"authors\":\"Amandine Guérin, Caroline Levasseur, Aline Herger, Dominik Renggli, Alexandros Georgios Sotiropoulos, Gabor Kadler, Xiaoyu Hou, Myriam Schaufelberger, Christian Meyer, Thomas Wicker, Laurent Bigler, Christoph Ringli\",\"doi\":\"10.1093/jxb/erae479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant growth depends on growth regulators, nutrient availability, and amino acids levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including LRR-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root-hair specific LRX1 without the extensin domain, which anchors the protein to the cell wall, has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae479\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae479","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histidine limitation alters plant development and influences the TOR network.

Plant growth depends on growth regulators, nutrient availability, and amino acids levels, all of which influence cell wall formation and cell expansion. Cell wall integrity and structures are surveyed and modified by a complex array of cell wall integrity sensors, including LRR-extensins (LRXs) that bind RALF (rapid alkalinization factor) peptides with high affinity and help to compact cell walls. Expressing the Arabidopsis root-hair specific LRX1 without the extensin domain, which anchors the protein to the cell wall, has a negative effect on root hair development. The mechanism of this negative effect was investigated by a suppressor screen, which led to the identification of a sune (suppressor of dominant-negative LRX1) mutant collection. The sune82 mutant was identified as an allele of HISN2, which encodes an enzyme essential for histidine biosynthesis. This mutation leads to reduced accumulation of histidine and an increase in several amino acids, which appears to have an effect on the TOR (target of rapamycin) network, a major controller of eukaryotic cell growth. It also represents an excellent tool to study the effects of reduced histidine levels on plant development, as it is a rare example of a viable partial loss-of-function allele in an essential biosynthetic pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信