Heng Qiao, Jingyi Chen, Min Dong, Jie Shen, Shuo Yan
{"title":"基于纳米载体的生态友好型 RNA 杀虫剂,用于植物病原体和害虫的可持续管理。","authors":"Heng Qiao, Jingyi Chen, Min Dong, Jie Shen, Shuo Yan","doi":"10.3390/nano14231874","DOIUrl":null,"url":null,"abstract":"<p><p>The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process. In this review, we systematically introduce the development of RNAi technology, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges and future prospects. The current review provides theoretical guidance for the in-depth research and diversified development of RNA pesticides, which can promote the development and practice of nanocarrier-mediated RNAi.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocarrier-Based Eco-Friendly RNA Pesticides for Sustainable Management of Plant Pathogens and Pests.\",\"authors\":\"Heng Qiao, Jingyi Chen, Min Dong, Jie Shen, Shuo Yan\",\"doi\":\"10.3390/nano14231874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process. In this review, we systematically introduce the development of RNAi technology, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges and future prospects. The current review provides theoretical guidance for the in-depth research and diversified development of RNA pesticides, which can promote the development and practice of nanocarrier-mediated RNAi.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"14 23\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14231874\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231874","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanocarrier-Based Eco-Friendly RNA Pesticides for Sustainable Management of Plant Pathogens and Pests.
The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process. In this review, we systematically introduce the development of RNAi technology, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges and future prospects. The current review provides theoretical guidance for the in-depth research and diversified development of RNA pesticides, which can promote the development and practice of nanocarrier-mediated RNAi.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.