{"title":"An Efficient Strength Evaluation Method Based on Shell-Fastener Model for Large Hybrid Joint Structures of C/SiC Composites.","authors":"Maoqing Fu, Jiapeng Chen, Ben Wang, Biao Wang","doi":"10.3390/ma17236008","DOIUrl":null,"url":null,"abstract":"<p><p>C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design. According to the structure characteristic, a fractal contact stiffness model considering bonded behaviors is established in this paper. By introducing this model, it is proved that the bonded layer can affect the interface strength between plates but not the bearing strength of the specimen for the bolt/bonded hybrid joint structure. Furthermore, by introducing the strength envelope method, this paper overcomes the problem wherein the shell-fastener model cannot accurately describe the complex stress field. Validation through experimental comparison confirms that this approach can accurately predict both the failure mode and strength of multi-row hybrid joint structures in C/SiC composites at a detailed level with an error of 5.4%, including the shear failure of bolts. This method offers a robust foundation for the design of large-scale C/SiC composite structures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An Efficient Strength Evaluation Method Based on Shell-Fastener Model for Large Hybrid Joint Structures of C/SiC Composites.
C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design. According to the structure characteristic, a fractal contact stiffness model considering bonded behaviors is established in this paper. By introducing this model, it is proved that the bonded layer can affect the interface strength between plates but not the bearing strength of the specimen for the bolt/bonded hybrid joint structure. Furthermore, by introducing the strength envelope method, this paper overcomes the problem wherein the shell-fastener model cannot accurately describe the complex stress field. Validation through experimental comparison confirms that this approach can accurately predict both the failure mode and strength of multi-row hybrid joint structures in C/SiC composites at a detailed level with an error of 5.4%, including the shear failure of bolts. This method offers a robust foundation for the design of large-scale C/SiC composite structures.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.