Silvana Bazua-Valenti, Matthew R Brown, Jason Zavras, Magdalena Riedl Khursigara, Elizabeth Grinkevich, Eriene-Heidi Sidhom, Keith H Keller, Matthew Racette, Moran Dvela-Levitt, Catarina Quintanova, Hasan Demirci, Sebastian Sewerin, Alissa C Goss, John Lin, Hyery Yoo, Alvaro S Vaca Jacome, Malvina Papanastasiou, Namrata Udeshi, Steven A Carr, Nina Himmerkus, Markus Bleich, Kerim Mutig, Sebastian Bachmann, Jan Halbritter, Stanislav Kmoch, Martina Živná, Kendrah Kidd, Anthony J Bleyer, Astrid Weins, Seth L Alper, Jillian L Shaw, Maria Kost-Alimova, Juan Lorenzo B Pablo, Anna Greka
{"title":"以 TMED 货物受体为靶标可挽救中断的尿囊素贩运。","authors":"Silvana Bazua-Valenti, Matthew R Brown, Jason Zavras, Magdalena Riedl Khursigara, Elizabeth Grinkevich, Eriene-Heidi Sidhom, Keith H Keller, Matthew Racette, Moran Dvela-Levitt, Catarina Quintanova, Hasan Demirci, Sebastian Sewerin, Alissa C Goss, John Lin, Hyery Yoo, Alvaro S Vaca Jacome, Malvina Papanastasiou, Namrata Udeshi, Steven A Carr, Nina Himmerkus, Markus Bleich, Kerim Mutig, Sebastian Bachmann, Jan Halbritter, Stanislav Kmoch, Martina Živná, Kendrah Kidd, Anthony J Bleyer, Astrid Weins, Seth L Alper, Jillian L Shaw, Maria Kost-Alimova, Juan Lorenzo B Pablo, Anna Greka","doi":"10.1172/JCI180347","DOIUrl":null,"url":null,"abstract":"<p><p>The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 24","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645142/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors.\",\"authors\":\"Silvana Bazua-Valenti, Matthew R Brown, Jason Zavras, Magdalena Riedl Khursigara, Elizabeth Grinkevich, Eriene-Heidi Sidhom, Keith H Keller, Matthew Racette, Moran Dvela-Levitt, Catarina Quintanova, Hasan Demirci, Sebastian Sewerin, Alissa C Goss, John Lin, Hyery Yoo, Alvaro S Vaca Jacome, Malvina Papanastasiou, Namrata Udeshi, Steven A Carr, Nina Himmerkus, Markus Bleich, Kerim Mutig, Sebastian Bachmann, Jan Halbritter, Stanislav Kmoch, Martina Živná, Kendrah Kidd, Anthony J Bleyer, Astrid Weins, Seth L Alper, Jillian L Shaw, Maria Kost-Alimova, Juan Lorenzo B Pablo, Anna Greka\",\"doi\":\"10.1172/JCI180347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\"134 24\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645142/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI180347\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI180347","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Disrupted uromodulin trafficking is rescued by targeting TMED cargo receptors.
The trafficking dynamics of uromodulin (UMOD), the most abundant protein in human urine, play a critical role in the pathogenesis of kidney disease. Monoallelic mutations in the UMOD gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD-UMOD), an incurable genetic disorder that leads to kidney failure. The disease is caused by the intracellular entrapment of mutant UMOD in kidney epithelial cells, but the precise mechanisms mediating disrupted UMOD trafficking remain elusive. Here, we report that transmembrane Emp24 protein transport domain-containing (TMED) cargo receptors TMED2, TMED9, and TMED10 bind UMOD and regulate its trafficking along the secretory pathway. Pharmacological targeting of TMEDs in cells, in human kidney organoids derived from patients with ADTKD-UMOD, and in mutant-UMOD-knockin mice reduced intracellular accumulation of mutant UMOD and restored trafficking and localization of UMOD to the apical plasma membrane. In vivo, the TMED-targeted small molecule also mitigated ER stress and markers of kidney damage and fibrosis. Our work reveals TMED-targeting small molecules as a promising therapeutic strategy for kidney proteinopathies.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.