微生物转化甾体皂苷产物中的 1-脱氢薯蓣皂苷具有强效抗癌活性

IF 5.6 2区 生物学
Quanshun Li, Shirong Feng, Yuanyuan Zhang, Fangyuan Mou, Ting Guo, Baofu Qin, Yihan Liu
{"title":"微生物转化甾体皂苷产物中的 1-脱氢薯蓣皂苷具有强效抗癌活性","authors":"Quanshun Li, Shirong Feng, Yuanyuan Zhang, Fangyuan Mou, Ting Guo, Baofu Qin, Yihan Liu","doi":"10.3390/ijms252313118","DOIUrl":null,"url":null,"abstract":"<p><p>Steroids are extensively used in the pharmaceutical industry as industrial raw materials for the production of anti-inflammatory and anti-tumor drugs. Microbial transformation, an environmentally friendly method, displays the potential for preparing steroids on an industrial scale. In this study, four steroids, including Diosgenin, Smilagenone, Yamogenin, and 1-Dehydrodiosgenone, were isolated and identified from the solid-state fermentation (SSF) product of a novel <i>Fusarium oxysporum</i> strain, and their anti-tumor activities were investigated. The cytotoxicity assay showed that 1-Dehydrodiosgenone had significant inhibitory effects on three tumor cell lines, Hala, A549, and Mad-MB468 cells, with IC<sub>50</sub>s of 6.59 μM, 5.43 μM, and 4.81 μM, respectively. 1-Dehydrodiosgenone significantly induced apoptosis and necrosis of Hala, A549, and Mad-MB468 cells by upregulating the expressions of cleaved caspase-3, cleaved PARP, Bax, and Bad. Moreover, no significant organ damage was observed in mice based on safety tests. Therefore, 1-Dehydrodiosgenone is expected to be developed as a safe and broad-spectrum anti-cancer agent.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potent Anti-Cancer Activity of 1-Dehydrodiosgenone from the Product of Microbial Transformation of Steroid Saponins.\",\"authors\":\"Quanshun Li, Shirong Feng, Yuanyuan Zhang, Fangyuan Mou, Ting Guo, Baofu Qin, Yihan Liu\",\"doi\":\"10.3390/ijms252313118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steroids are extensively used in the pharmaceutical industry as industrial raw materials for the production of anti-inflammatory and anti-tumor drugs. Microbial transformation, an environmentally friendly method, displays the potential for preparing steroids on an industrial scale. In this study, four steroids, including Diosgenin, Smilagenone, Yamogenin, and 1-Dehydrodiosgenone, were isolated and identified from the solid-state fermentation (SSF) product of a novel <i>Fusarium oxysporum</i> strain, and their anti-tumor activities were investigated. The cytotoxicity assay showed that 1-Dehydrodiosgenone had significant inhibitory effects on three tumor cell lines, Hala, A549, and Mad-MB468 cells, with IC<sub>50</sub>s of 6.59 μM, 5.43 μM, and 4.81 μM, respectively. 1-Dehydrodiosgenone significantly induced apoptosis and necrosis of Hala, A549, and Mad-MB468 cells by upregulating the expressions of cleaved caspase-3, cleaved PARP, Bax, and Bad. Moreover, no significant organ damage was observed in mice based on safety tests. Therefore, 1-Dehydrodiosgenone is expected to be developed as a safe and broad-spectrum anti-cancer agent.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"25 23\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms252313118\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313118","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potent Anti-Cancer Activity of 1-Dehydrodiosgenone from the Product of Microbial Transformation of Steroid Saponins.

Steroids are extensively used in the pharmaceutical industry as industrial raw materials for the production of anti-inflammatory and anti-tumor drugs. Microbial transformation, an environmentally friendly method, displays the potential for preparing steroids on an industrial scale. In this study, four steroids, including Diosgenin, Smilagenone, Yamogenin, and 1-Dehydrodiosgenone, were isolated and identified from the solid-state fermentation (SSF) product of a novel Fusarium oxysporum strain, and their anti-tumor activities were investigated. The cytotoxicity assay showed that 1-Dehydrodiosgenone had significant inhibitory effects on three tumor cell lines, Hala, A549, and Mad-MB468 cells, with IC50s of 6.59 μM, 5.43 μM, and 4.81 μM, respectively. 1-Dehydrodiosgenone significantly induced apoptosis and necrosis of Hala, A549, and Mad-MB468 cells by upregulating the expressions of cleaved caspase-3, cleaved PARP, Bax, and Bad. Moreover, no significant organ damage was observed in mice based on safety tests. Therefore, 1-Dehydrodiosgenone is expected to be developed as a safe and broad-spectrum anti-cancer agent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信