Jing Li, Peiyu Li, Tereza Brachtlova, Ida H van der Meulen-Muileman, Henk Dekker, Vishal S Kumar, Marieke Fransen, Idris Bahce, Emanuela Felley-Bosco, Victor W van Beusechem
{"title":"评估作为癌症治疗潜在靶点的剪接体蛋白 SmD2","authors":"Jing Li, Peiyu Li, Tereza Brachtlova, Ida H van der Meulen-Muileman, Henk Dekker, Vishal S Kumar, Marieke Fransen, Idris Bahce, Emanuela Felley-Bosco, Victor W van Beusechem","doi":"10.3390/ijms252313131","DOIUrl":null,"url":null,"abstract":"<p><p>The core spliceosome Sm proteins are gaining attention as potential targets for cancer treatment. Here, we evaluate this, with focus on SmD2. A pan-cancer analysis including 26 solid tumor types revealed that the SmD2-encoding <i>SNRPD2</i> gene was overexpressed in almost all cancers. In several cancers, high <i>SNRPD2</i> expression was associated with a poor prognosis. To investigate the vulnerability of human cells to the loss of SmD2 expression, we silenced <i>SNRPD2</i> using a short hairpin-expressing lentiviral vector in established cancer cell lines; in short-term cultured melanoma cells; and in several normal cell cultures, including cancer-associated fibroblasts cultured from non-small cell lung cancer resections. Additionally, we analyzed publicly available cell viability datasets for the dependency of cancer cell lines to SmD2 expression. Together, these studies clearly established SmD2 as a cancer-selective lethal target. Delving into genes with similar essentiality profiles to <i>SNRPD2</i>, we uncovered the intersected lethal stress between the loss of SmD2 and the loss of gene products participating in not only different mRNA processing steps including mRNA splicing, but also processes for coordinated protein production, as well as mitosis. Furthermore, we could correlate <i>SNRPD2</i> expression to the responses of cancer cells to several FDA-approved anti-tumor drugs, especially to drugs inhibiting the cell cycle. Overall, our study confirms the anticipated role for targeting SmD2 in cancer treatment and reveals non-canonical SmD2 functions beyond mRNA splicing that could contribute to the dependency of cancer cells to high <i>SNRPD2</i> expression.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Spliceosome Protein SmD2 as a Potential Target for Cancer Therapy.\",\"authors\":\"Jing Li, Peiyu Li, Tereza Brachtlova, Ida H van der Meulen-Muileman, Henk Dekker, Vishal S Kumar, Marieke Fransen, Idris Bahce, Emanuela Felley-Bosco, Victor W van Beusechem\",\"doi\":\"10.3390/ijms252313131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The core spliceosome Sm proteins are gaining attention as potential targets for cancer treatment. Here, we evaluate this, with focus on SmD2. A pan-cancer analysis including 26 solid tumor types revealed that the SmD2-encoding <i>SNRPD2</i> gene was overexpressed in almost all cancers. In several cancers, high <i>SNRPD2</i> expression was associated with a poor prognosis. To investigate the vulnerability of human cells to the loss of SmD2 expression, we silenced <i>SNRPD2</i> using a short hairpin-expressing lentiviral vector in established cancer cell lines; in short-term cultured melanoma cells; and in several normal cell cultures, including cancer-associated fibroblasts cultured from non-small cell lung cancer resections. Additionally, we analyzed publicly available cell viability datasets for the dependency of cancer cell lines to SmD2 expression. Together, these studies clearly established SmD2 as a cancer-selective lethal target. Delving into genes with similar essentiality profiles to <i>SNRPD2</i>, we uncovered the intersected lethal stress between the loss of SmD2 and the loss of gene products participating in not only different mRNA processing steps including mRNA splicing, but also processes for coordinated protein production, as well as mitosis. Furthermore, we could correlate <i>SNRPD2</i> expression to the responses of cancer cells to several FDA-approved anti-tumor drugs, especially to drugs inhibiting the cell cycle. Overall, our study confirms the anticipated role for targeting SmD2 in cancer treatment and reveals non-canonical SmD2 functions beyond mRNA splicing that could contribute to the dependency of cancer cells to high <i>SNRPD2</i> expression.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"25 23\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms252313131\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Spliceosome Protein SmD2 as a Potential Target for Cancer Therapy.
The core spliceosome Sm proteins are gaining attention as potential targets for cancer treatment. Here, we evaluate this, with focus on SmD2. A pan-cancer analysis including 26 solid tumor types revealed that the SmD2-encoding SNRPD2 gene was overexpressed in almost all cancers. In several cancers, high SNRPD2 expression was associated with a poor prognosis. To investigate the vulnerability of human cells to the loss of SmD2 expression, we silenced SNRPD2 using a short hairpin-expressing lentiviral vector in established cancer cell lines; in short-term cultured melanoma cells; and in several normal cell cultures, including cancer-associated fibroblasts cultured from non-small cell lung cancer resections. Additionally, we analyzed publicly available cell viability datasets for the dependency of cancer cell lines to SmD2 expression. Together, these studies clearly established SmD2 as a cancer-selective lethal target. Delving into genes with similar essentiality profiles to SNRPD2, we uncovered the intersected lethal stress between the loss of SmD2 and the loss of gene products participating in not only different mRNA processing steps including mRNA splicing, but also processes for coordinated protein production, as well as mitosis. Furthermore, we could correlate SNRPD2 expression to the responses of cancer cells to several FDA-approved anti-tumor drugs, especially to drugs inhibiting the cell cycle. Overall, our study confirms the anticipated role for targeting SmD2 in cancer treatment and reveals non-canonical SmD2 functions beyond mRNA splicing that could contribute to the dependency of cancer cells to high SNRPD2 expression.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).