Kai Xu, Wenhong Xiao, Dazhi Hu, Marcel Holyoak, Chengpeng Ji, Juntao Zhang, Duifang Ma, Zhishu Xiao
{"title":"牲畜放牧对雪豹与猎物时空互动的影响","authors":"Kai Xu, Wenhong Xiao, Dazhi Hu, Marcel Holyoak, Chengpeng Ji, Juntao Zhang, Duifang Ma, Zhishu Xiao","doi":"10.1111/1749-4877.12935","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporal interactions between predators and prey are central to maintaining sustainable functioning ecosystems and community stability. For wild ungulates and their predators, livestock grazing is an important anthropogenic disturbance causing population declines and modifying their interactions over time and space. However, it is poorly understood how fine-scale grazing affects the spatiotemporal responses of predators, prey, and their interactions. Two opposing hypotheses describe a dichotomy of possible effects. The human shield hypothesis states that people can protect prey because predators avoid areas with high human-induced mortality risk, whereas in the human competitor hypothesis, humans compete for prey and negatively impact predators through reduced prey availability. We used camera-trapping data from the Gansu Qilianshan National Nature Reserve in Northwest China to measure occupancy, daily activity patterns, and spatiotemporal interactions between snow leopards (Panthera uncia), the dominant predator, and their ungulate prey in areas with contrasting grazing intensities. The results of grazing were consistent with both the human-shield and human-competitor hypotheses, affecting spatiotemporal patterns and interactions of predators and prey. For the primary prey species, blue sheep (Pseudois nayaur), their spatial and temporal patterns were affected by grazing, which led to a reduction in interaction frequencies with snow leopards. For secondary prey, grazing led to reduced interaction frequencies with snow leopards for white-lipped deer (Przewalskium albirostris) and red deer (Cervus yarkandensis), but increased frequencies for alpine musk deer (Moschus chrysogaster). Our results indicate how both competition among livestock and prey and predator or prey avoidance of grazed areas can impact populations and predator-prey interactions. Our findings are relevant to grazing management and snow leopard conservation.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Livestock Grazing on Spatiotemporal Interactions Between Snow Leopards and Ungulate Prey.\",\"authors\":\"Kai Xu, Wenhong Xiao, Dazhi Hu, Marcel Holyoak, Chengpeng Ji, Juntao Zhang, Duifang Ma, Zhishu Xiao\",\"doi\":\"10.1111/1749-4877.12935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatiotemporal interactions between predators and prey are central to maintaining sustainable functioning ecosystems and community stability. For wild ungulates and their predators, livestock grazing is an important anthropogenic disturbance causing population declines and modifying their interactions over time and space. However, it is poorly understood how fine-scale grazing affects the spatiotemporal responses of predators, prey, and their interactions. Two opposing hypotheses describe a dichotomy of possible effects. The human shield hypothesis states that people can protect prey because predators avoid areas with high human-induced mortality risk, whereas in the human competitor hypothesis, humans compete for prey and negatively impact predators through reduced prey availability. We used camera-trapping data from the Gansu Qilianshan National Nature Reserve in Northwest China to measure occupancy, daily activity patterns, and spatiotemporal interactions between snow leopards (Panthera uncia), the dominant predator, and their ungulate prey in areas with contrasting grazing intensities. The results of grazing were consistent with both the human-shield and human-competitor hypotheses, affecting spatiotemporal patterns and interactions of predators and prey. For the primary prey species, blue sheep (Pseudois nayaur), their spatial and temporal patterns were affected by grazing, which led to a reduction in interaction frequencies with snow leopards. For secondary prey, grazing led to reduced interaction frequencies with snow leopards for white-lipped deer (Przewalskium albirostris) and red deer (Cervus yarkandensis), but increased frequencies for alpine musk deer (Moschus chrysogaster). Our results indicate how both competition among livestock and prey and predator or prey avoidance of grazed areas can impact populations and predator-prey interactions. Our findings are relevant to grazing management and snow leopard conservation.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12935\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12935","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Effects of Livestock Grazing on Spatiotemporal Interactions Between Snow Leopards and Ungulate Prey.
Spatiotemporal interactions between predators and prey are central to maintaining sustainable functioning ecosystems and community stability. For wild ungulates and their predators, livestock grazing is an important anthropogenic disturbance causing population declines and modifying their interactions over time and space. However, it is poorly understood how fine-scale grazing affects the spatiotemporal responses of predators, prey, and their interactions. Two opposing hypotheses describe a dichotomy of possible effects. The human shield hypothesis states that people can protect prey because predators avoid areas with high human-induced mortality risk, whereas in the human competitor hypothesis, humans compete for prey and negatively impact predators through reduced prey availability. We used camera-trapping data from the Gansu Qilianshan National Nature Reserve in Northwest China to measure occupancy, daily activity patterns, and spatiotemporal interactions between snow leopards (Panthera uncia), the dominant predator, and their ungulate prey in areas with contrasting grazing intensities. The results of grazing were consistent with both the human-shield and human-competitor hypotheses, affecting spatiotemporal patterns and interactions of predators and prey. For the primary prey species, blue sheep (Pseudois nayaur), their spatial and temporal patterns were affected by grazing, which led to a reduction in interaction frequencies with snow leopards. For secondary prey, grazing led to reduced interaction frequencies with snow leopards for white-lipped deer (Przewalskium albirostris) and red deer (Cervus yarkandensis), but increased frequencies for alpine musk deer (Moschus chrysogaster). Our results indicate how both competition among livestock and prey and predator or prey avoidance of grazed areas can impact populations and predator-prey interactions. Our findings are relevant to grazing management and snow leopard conservation.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations