{"title":"间充质干细胞移植后 2 型糖尿病患者时钟基因的昼夜节律。","authors":"Michiko Horiguchi, Kenichi Yoshihara, Kenji Watanabe, Yuya Tsurudome, Yoichi Mizukami, Kentaro Ushijima","doi":"10.3390/ijms252313145","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative therapy involving stem cell transplantation has become an option for the radical treatment of diabetes mellitus. Disruption in the clock genes of stem cells affects the homeostasis of transplanted tissues. We examined the circadian rhythm of genes in transplanted adipose-derived mesenchymal stem cells derived from a patient with type 2 diabetes mellitus (T2DM-ADSC). The clock genes (PER2, CLOCK1, CRY1, and ARNTL[BMAL1]) exhibited similar daily fluctuations in phase and amplitude between a group transplanted with adipose-derived mesenchymal stem cells derived from a healthy individual (N-ADSC) and a group transplanted with T2DM-ADSC. The findings demonstrated that clock genes in stem cells are synchronized with those in living organisms. Next-generation sequencing was then employed to categorize genes that exhibited variation in expression between N-ADSC and T2DM-ADSC. MTATP8P1 and NDUFA7_2 gene expression was significantly reduced at two time points (ZT6 and ZT18), and daily fluctuations were lost. The present study reports, for the first time, that the circadian rhythms of MTATP8P1 and NDUFA7_2, genes involved in mitochondrial processes, are altered in T2DM-ADSC.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian Rhythms of Clock Genes After Transplantation of Mesenchymal Stem Cells with Type 2 Diabetes Mellitus.\",\"authors\":\"Michiko Horiguchi, Kenichi Yoshihara, Kenji Watanabe, Yuya Tsurudome, Yoichi Mizukami, Kentaro Ushijima\",\"doi\":\"10.3390/ijms252313145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative therapy involving stem cell transplantation has become an option for the radical treatment of diabetes mellitus. Disruption in the clock genes of stem cells affects the homeostasis of transplanted tissues. We examined the circadian rhythm of genes in transplanted adipose-derived mesenchymal stem cells derived from a patient with type 2 diabetes mellitus (T2DM-ADSC). The clock genes (PER2, CLOCK1, CRY1, and ARNTL[BMAL1]) exhibited similar daily fluctuations in phase and amplitude between a group transplanted with adipose-derived mesenchymal stem cells derived from a healthy individual (N-ADSC) and a group transplanted with T2DM-ADSC. The findings demonstrated that clock genes in stem cells are synchronized with those in living organisms. Next-generation sequencing was then employed to categorize genes that exhibited variation in expression between N-ADSC and T2DM-ADSC. MTATP8P1 and NDUFA7_2 gene expression was significantly reduced at two time points (ZT6 and ZT18), and daily fluctuations were lost. The present study reports, for the first time, that the circadian rhythms of MTATP8P1 and NDUFA7_2, genes involved in mitochondrial processes, are altered in T2DM-ADSC.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"25 23\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms252313145\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circadian Rhythms of Clock Genes After Transplantation of Mesenchymal Stem Cells with Type 2 Diabetes Mellitus.
Regenerative therapy involving stem cell transplantation has become an option for the radical treatment of diabetes mellitus. Disruption in the clock genes of stem cells affects the homeostasis of transplanted tissues. We examined the circadian rhythm of genes in transplanted adipose-derived mesenchymal stem cells derived from a patient with type 2 diabetes mellitus (T2DM-ADSC). The clock genes (PER2, CLOCK1, CRY1, and ARNTL[BMAL1]) exhibited similar daily fluctuations in phase and amplitude between a group transplanted with adipose-derived mesenchymal stem cells derived from a healthy individual (N-ADSC) and a group transplanted with T2DM-ADSC. The findings demonstrated that clock genes in stem cells are synchronized with those in living organisms. Next-generation sequencing was then employed to categorize genes that exhibited variation in expression between N-ADSC and T2DM-ADSC. MTATP8P1 and NDUFA7_2 gene expression was significantly reduced at two time points (ZT6 and ZT18), and daily fluctuations were lost. The present study reports, for the first time, that the circadian rhythms of MTATP8P1 and NDUFA7_2, genes involved in mitochondrial processes, are altered in T2DM-ADSC.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).