{"title":"中药材川贝母白瑞颗粒中酚类化合物的细胞毒活性。","authors":"Shaobin Zhang, Hong Chen, Juan Hua, Shihong Luo","doi":"10.3389/fchem.2024.1506792","DOIUrl":null,"url":null,"abstract":"<p><p>The Chinese medicinal plant <i>Thesium chinense</i> Turcz. is the only plant used in the manufacture of Bairui Granules. However, to date, there has been very little research into the cytotoxic activity of active substances derived from Bairui Granules. Using chemical separation and spectroscopic methods, phenolic compounds 1-5 were identified as methyl-<i>p</i>-hydroxycinnamate, vanillin, kaempferol, isorhamnetin-3-<i>O</i>-glucoside, and astragalin, respectively. UPLC-MS/MS analyses revealed that compounds 1-5 were present at concentrations of 0.006 ± 0.002, 1.63 ± 0.87, 3.65 ± 0.83, 26.97 ± 11.41, and 27.67 ± 2.91 <i>μ</i>g/g, respectively in Bairui Granules. Compounds 1, 2, and 4 were detected here for the first time in Bairui Granules. Using co-culture experiments, isorhamnetin-3-<i>O</i>-glucoside (4) was found to be beneficial to the proliferation Chinese hamster ovary (CHO) cells (6.46% ± 0.86% to 38.45% ± 9.04%), natural killer cells from human umbilical cord blood (UCB NK cells) (25.68% ± 0.02% to 70.81% ± 0.26%), and mesenchymal stem cells from human umbilical cord blood (UCB MSC cells) (1.66% ± 0.05% to 27.64% ± 0.51%) when the concentration was similar to that found in Bairui granules. Moreover, vanillin (2) was conducive to UCB NK cells proliferation (28.21% ± 0.44%) at a concentration of 64 <i>μ</i>g/mL, while maintaining cell viability. UCB NK cell proliferation was promoted at rates of 41.03% ± 0.48% to 67.22% ± 0.68% when astragalin (5) was present at low concentrations (8 and 16 <i>μ</i>g/mL). Methyl-<i>p</i>-hydroxycinnamate (1) and vanillin (2) at different concentrations both had an inhibitory effect on the proliferation of natural killer cells from human peripheral blood (PB NK cells), but the inhibitory concentration ranges of these compounds were not equivalent to the concentration ranges of the compounds in Bairui Granules. These results provide a foundation for the safe use of <i>T. chinense</i> preparations.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1506792"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cytotoxic activity of phenolic compounds in Bairui Granules obtained from the Chinese medicinal plant <i>Thesium chinense</i>.\",\"authors\":\"Shaobin Zhang, Hong Chen, Juan Hua, Shihong Luo\",\"doi\":\"10.3389/fchem.2024.1506792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Chinese medicinal plant <i>Thesium chinense</i> Turcz. is the only plant used in the manufacture of Bairui Granules. However, to date, there has been very little research into the cytotoxic activity of active substances derived from Bairui Granules. Using chemical separation and spectroscopic methods, phenolic compounds 1-5 were identified as methyl-<i>p</i>-hydroxycinnamate, vanillin, kaempferol, isorhamnetin-3-<i>O</i>-glucoside, and astragalin, respectively. UPLC-MS/MS analyses revealed that compounds 1-5 were present at concentrations of 0.006 ± 0.002, 1.63 ± 0.87, 3.65 ± 0.83, 26.97 ± 11.41, and 27.67 ± 2.91 <i>μ</i>g/g, respectively in Bairui Granules. Compounds 1, 2, and 4 were detected here for the first time in Bairui Granules. Using co-culture experiments, isorhamnetin-3-<i>O</i>-glucoside (4) was found to be beneficial to the proliferation Chinese hamster ovary (CHO) cells (6.46% ± 0.86% to 38.45% ± 9.04%), natural killer cells from human umbilical cord blood (UCB NK cells) (25.68% ± 0.02% to 70.81% ± 0.26%), and mesenchymal stem cells from human umbilical cord blood (UCB MSC cells) (1.66% ± 0.05% to 27.64% ± 0.51%) when the concentration was similar to that found in Bairui granules. Moreover, vanillin (2) was conducive to UCB NK cells proliferation (28.21% ± 0.44%) at a concentration of 64 <i>μ</i>g/mL, while maintaining cell viability. UCB NK cell proliferation was promoted at rates of 41.03% ± 0.48% to 67.22% ± 0.68% when astragalin (5) was present at low concentrations (8 and 16 <i>μ</i>g/mL). Methyl-<i>p</i>-hydroxycinnamate (1) and vanillin (2) at different concentrations both had an inhibitory effect on the proliferation of natural killer cells from human peripheral blood (PB NK cells), but the inhibitory concentration ranges of these compounds were not equivalent to the concentration ranges of the compounds in Bairui Granules. These results provide a foundation for the safe use of <i>T. chinense</i> preparations.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"12 \",\"pages\":\"1506792\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2024.1506792\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1506792","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cytotoxic activity of phenolic compounds in Bairui Granules obtained from the Chinese medicinal plant Thesium chinense.
The Chinese medicinal plant Thesium chinense Turcz. is the only plant used in the manufacture of Bairui Granules. However, to date, there has been very little research into the cytotoxic activity of active substances derived from Bairui Granules. Using chemical separation and spectroscopic methods, phenolic compounds 1-5 were identified as methyl-p-hydroxycinnamate, vanillin, kaempferol, isorhamnetin-3-O-glucoside, and astragalin, respectively. UPLC-MS/MS analyses revealed that compounds 1-5 were present at concentrations of 0.006 ± 0.002, 1.63 ± 0.87, 3.65 ± 0.83, 26.97 ± 11.41, and 27.67 ± 2.91 μg/g, respectively in Bairui Granules. Compounds 1, 2, and 4 were detected here for the first time in Bairui Granules. Using co-culture experiments, isorhamnetin-3-O-glucoside (4) was found to be beneficial to the proliferation Chinese hamster ovary (CHO) cells (6.46% ± 0.86% to 38.45% ± 9.04%), natural killer cells from human umbilical cord blood (UCB NK cells) (25.68% ± 0.02% to 70.81% ± 0.26%), and mesenchymal stem cells from human umbilical cord blood (UCB MSC cells) (1.66% ± 0.05% to 27.64% ± 0.51%) when the concentration was similar to that found in Bairui granules. Moreover, vanillin (2) was conducive to UCB NK cells proliferation (28.21% ± 0.44%) at a concentration of 64 μg/mL, while maintaining cell viability. UCB NK cell proliferation was promoted at rates of 41.03% ± 0.48% to 67.22% ± 0.68% when astragalin (5) was present at low concentrations (8 and 16 μg/mL). Methyl-p-hydroxycinnamate (1) and vanillin (2) at different concentrations both had an inhibitory effect on the proliferation of natural killer cells from human peripheral blood (PB NK cells), but the inhibitory concentration ranges of these compounds were not equivalent to the concentration ranges of the compounds in Bairui Granules. These results provide a foundation for the safe use of T. chinense preparations.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.