{"title":"呋喃在体外诱导小鼠 Sertoli 细胞氧化应激、DNA 损伤和细胞凋亡,从而损害细胞功能。","authors":"Yasemin Aydin, Yasemin Ulku Dikbasan, Banu Orta-Yilmaz","doi":"10.1080/01480545.2024.2437056","DOIUrl":null,"url":null,"abstract":"<p><p>Research on heat-induced food contaminants, such as furan, has shown its harmful effects on various systems. However, the impact of furan on Sertoli cells, a crucial male reproductive system cell, has not been studied. The investigation involved the treatment of furan to TM4 Sertoli cells at various concentrations (750, 1500, and 3000 µM) over a period of 24 h. This <i>in vitro</i> study determined that furan causes a decrease in Sertoli cell viability and an increase in lactate dehydrogenase activity, leading to cytotoxicity. Additionally, we observed an increase in MDA, one of the oxidative stress markers, in Sertoli cells, indicating that furan exposure leads to lipid peroxidation. It was determined that enzyme activities in the antioxidant defense system in Sertoli cells decreased after furan exposure. The findings indicate that furan induces oxidative damage in Sertoli cells by impairing the activity of antioxidant enzymes and promoting the production of ROS. This study discovered that furan triggers apoptosis in Sertoli cells by damaging DNA and altering the expression levels of apoptotic genes. Moreover, results suggest that furan causes cellular toxicity and apoptosis, leading to damage to Sertoli cells and thus causing male infertility.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Furan impairs cell function by inducing oxidative stress, DNA damage and apoptosis in mouse Sertoli cells <i>in vitro</i>.\",\"authors\":\"Yasemin Aydin, Yasemin Ulku Dikbasan, Banu Orta-Yilmaz\",\"doi\":\"10.1080/01480545.2024.2437056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on heat-induced food contaminants, such as furan, has shown its harmful effects on various systems. However, the impact of furan on Sertoli cells, a crucial male reproductive system cell, has not been studied. The investigation involved the treatment of furan to TM4 Sertoli cells at various concentrations (750, 1500, and 3000 µM) over a period of 24 h. This <i>in vitro</i> study determined that furan causes a decrease in Sertoli cell viability and an increase in lactate dehydrogenase activity, leading to cytotoxicity. Additionally, we observed an increase in MDA, one of the oxidative stress markers, in Sertoli cells, indicating that furan exposure leads to lipid peroxidation. It was determined that enzyme activities in the antioxidant defense system in Sertoli cells decreased after furan exposure. The findings indicate that furan induces oxidative damage in Sertoli cells by impairing the activity of antioxidant enzymes and promoting the production of ROS. This study discovered that furan triggers apoptosis in Sertoli cells by damaging DNA and altering the expression levels of apoptotic genes. Moreover, results suggest that furan causes cellular toxicity and apoptosis, leading to damage to Sertoli cells and thus causing male infertility.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2437056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2437056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Furan impairs cell function by inducing oxidative stress, DNA damage and apoptosis in mouse Sertoli cells in vitro.
Research on heat-induced food contaminants, such as furan, has shown its harmful effects on various systems. However, the impact of furan on Sertoli cells, a crucial male reproductive system cell, has not been studied. The investigation involved the treatment of furan to TM4 Sertoli cells at various concentrations (750, 1500, and 3000 µM) over a period of 24 h. This in vitro study determined that furan causes a decrease in Sertoli cell viability and an increase in lactate dehydrogenase activity, leading to cytotoxicity. Additionally, we observed an increase in MDA, one of the oxidative stress markers, in Sertoli cells, indicating that furan exposure leads to lipid peroxidation. It was determined that enzyme activities in the antioxidant defense system in Sertoli cells decreased after furan exposure. The findings indicate that furan induces oxidative damage in Sertoli cells by impairing the activity of antioxidant enzymes and promoting the production of ROS. This study discovered that furan triggers apoptosis in Sertoli cells by damaging DNA and altering the expression levels of apoptotic genes. Moreover, results suggest that furan causes cellular toxicity and apoptosis, leading to damage to Sertoli cells and thus causing male infertility.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.