{"title":"胸腺酚负载锌铁氧体纳米粒子:一种通过 ROS 媒介机制增强对 M. smegmatis 抗菌和抗生物膜活性的新型载体。","authors":"Bhabani Shankar Das, Ashirbad Saragi, Lipsa Leena Panigrahi, Sunita Nayak, Manoranjan Arakha, Debapriya Bhattacharya","doi":"10.2174/0115680266348684241211072446","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction/objective: </strong>Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.</p><p><strong>Methods: </strong>A nanoparticle-based delivery system was developed using biocompatible Thymolconjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFe2O4 NPs). The nanoconjugates were characterized for their morphological and chemical properties.</p><p><strong>Results: </strong>The characterization of synthesised nanoparticles showed THY-CH-ZnFe2O4 NPs to exhibit enhanced biocompatibility and antibacterial activity against M. smegmatis compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.</p><p><strong>Conclusion: </strong>The study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thymol-Loaded Zinc Ferrite Nanoparticles: A Novel Carrier for Enhanced Antimicrobial and Antibiofilm Activity against M. smegmatis through ROS-Mediated Mechanism.\",\"authors\":\"Bhabani Shankar Das, Ashirbad Saragi, Lipsa Leena Panigrahi, Sunita Nayak, Manoranjan Arakha, Debapriya Bhattacharya\",\"doi\":\"10.2174/0115680266348684241211072446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction/objective: </strong>Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.</p><p><strong>Methods: </strong>A nanoparticle-based delivery system was developed using biocompatible Thymolconjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFe2O4 NPs). The nanoconjugates were characterized for their morphological and chemical properties.</p><p><strong>Results: </strong>The characterization of synthesised nanoparticles showed THY-CH-ZnFe2O4 NPs to exhibit enhanced biocompatibility and antibacterial activity against M. smegmatis compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.</p><p><strong>Conclusion: </strong>The study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266348684241211072446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266348684241211072446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Thymol-Loaded Zinc Ferrite Nanoparticles: A Novel Carrier for Enhanced Antimicrobial and Antibiofilm Activity against M. smegmatis through ROS-Mediated Mechanism.
Introduction/objective: Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.
Methods: A nanoparticle-based delivery system was developed using biocompatible Thymolconjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFe2O4 NPs). The nanoconjugates were characterized for their morphological and chemical properties.
Results: The characterization of synthesised nanoparticles showed THY-CH-ZnFe2O4 NPs to exhibit enhanced biocompatibility and antibacterial activity against M. smegmatis compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.
Conclusion: The study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.