Bomi Kim, Jiho Park, Hee Young Na, Sinwoo Park, Jeonghwa Jin, Kwangrok Jung, Jong-Chan Lee, Jin-Hyeok Hwang, Minseok Seo, Jaihwan Kim
{"title":"从胰胆管癌患者病理未确诊标本中提取患者衍生癌症器官组织的起源。","authors":"Bomi Kim, Jiho Park, Hee Young Na, Sinwoo Park, Jeonghwa Jin, Kwangrok Jung, Jong-Chan Lee, Jin-Hyeok Hwang, Minseok Seo, Jaihwan Kim","doi":"10.1007/s13402-024-01026-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tissue confirmation of pancreatobiliary cancer is often difficult because of the location of the tumor and structure of the surrounding blood vessels. Patient-derived cancer organoids (PDCOs) reflect the genomic characteristics of individual cancers. Although diverse attempts to construct PDCOs for various pancreatobiliary cancer models are ongoing, no research results have yet confirmed the possibility of performing a precise diagnosis on PDCOs derived from pathologically negative patient samples.</p><p><strong>Methods: </strong>We obtained a total of nine samples, including pathologically negative samples, from four patients (three patients with pancreatic cancer and one patient with gallbladder cancer) using different tissue acquisition methods to establish PDCOs (success rate 75%).</p><p><strong>Results: </strong>We successfully verified whether the constructed PDCOs could represent the tissues of patients with pancreatobiliary cancer at each multi-omics level using tumor panel sequencing, single-cell RNA sequencing, hematoxylin and eosin, and immunohistochemical staining. PDCOs from pathologically negative samples showed expression patterns of malignant ductal cell-related biomarkers similar to those of other pathologically positive samples. Furthermore, the expression patterns at the single-cell level in PDCO from patients ultimately diagnosed with gallbladder cancer after surgery were different from those in patients with pancreatic cancer.</p><p><strong>Conclusion: </strong>Therefore, our study implicated the potential of PDCOs as diagnostic and research tools, including for case involving limited tissue samples. Based on these results, we anticipate that this could be extended to more advanced studies, such as drug sensitivity testing, through large-scale trials in the near future.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The origin of patient-derived cancer organoids from pathologically undiagnosed specimen in patients with pancreatobiliary cancers.\",\"authors\":\"Bomi Kim, Jiho Park, Hee Young Na, Sinwoo Park, Jeonghwa Jin, Kwangrok Jung, Jong-Chan Lee, Jin-Hyeok Hwang, Minseok Seo, Jaihwan Kim\",\"doi\":\"10.1007/s13402-024-01026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Tissue confirmation of pancreatobiliary cancer is often difficult because of the location of the tumor and structure of the surrounding blood vessels. Patient-derived cancer organoids (PDCOs) reflect the genomic characteristics of individual cancers. Although diverse attempts to construct PDCOs for various pancreatobiliary cancer models are ongoing, no research results have yet confirmed the possibility of performing a precise diagnosis on PDCOs derived from pathologically negative patient samples.</p><p><strong>Methods: </strong>We obtained a total of nine samples, including pathologically negative samples, from four patients (three patients with pancreatic cancer and one patient with gallbladder cancer) using different tissue acquisition methods to establish PDCOs (success rate 75%).</p><p><strong>Results: </strong>We successfully verified whether the constructed PDCOs could represent the tissues of patients with pancreatobiliary cancer at each multi-omics level using tumor panel sequencing, single-cell RNA sequencing, hematoxylin and eosin, and immunohistochemical staining. PDCOs from pathologically negative samples showed expression patterns of malignant ductal cell-related biomarkers similar to those of other pathologically positive samples. Furthermore, the expression patterns at the single-cell level in PDCO from patients ultimately diagnosed with gallbladder cancer after surgery were different from those in patients with pancreatic cancer.</p><p><strong>Conclusion: </strong>Therefore, our study implicated the potential of PDCOs as diagnostic and research tools, including for case involving limited tissue samples. Based on these results, we anticipate that this could be extended to more advanced studies, such as drug sensitivity testing, through large-scale trials in the near future.</p>\",\"PeriodicalId\":9690,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-024-01026-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01026-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
The origin of patient-derived cancer organoids from pathologically undiagnosed specimen in patients with pancreatobiliary cancers.
Purpose: Tissue confirmation of pancreatobiliary cancer is often difficult because of the location of the tumor and structure of the surrounding blood vessels. Patient-derived cancer organoids (PDCOs) reflect the genomic characteristics of individual cancers. Although diverse attempts to construct PDCOs for various pancreatobiliary cancer models are ongoing, no research results have yet confirmed the possibility of performing a precise diagnosis on PDCOs derived from pathologically negative patient samples.
Methods: We obtained a total of nine samples, including pathologically negative samples, from four patients (three patients with pancreatic cancer and one patient with gallbladder cancer) using different tissue acquisition methods to establish PDCOs (success rate 75%).
Results: We successfully verified whether the constructed PDCOs could represent the tissues of patients with pancreatobiliary cancer at each multi-omics level using tumor panel sequencing, single-cell RNA sequencing, hematoxylin and eosin, and immunohistochemical staining. PDCOs from pathologically negative samples showed expression patterns of malignant ductal cell-related biomarkers similar to those of other pathologically positive samples. Furthermore, the expression patterns at the single-cell level in PDCO from patients ultimately diagnosed with gallbladder cancer after surgery were different from those in patients with pancreatic cancer.
Conclusion: Therefore, our study implicated the potential of PDCOs as diagnostic and research tools, including for case involving limited tissue samples. Based on these results, we anticipate that this could be extended to more advanced studies, such as drug sensitivity testing, through large-scale trials in the near future.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.