{"title":"推进多重离子监测技术:开发基于热拉伸聚合物纤维的集成离子探针。","authors":"Jingxuan Wu , Tomoki Saizaki , Tatsuo Yoshinobu , Yuanyuan Guo","doi":"10.1016/j.talanta.2024.127249","DOIUrl":null,"url":null,"abstract":"<div><div>The monitoring of ion homeostasis in vivo is of paramount importance due to its critical functions in biological systems. However, current leading technologies for creating ion-selective electrodes often fall short of the requirements for in vivo applications in terms of multiplexity, miniaturization, and flexibility. To address this gap, we introduce an integrated multiplexed ion monitoring probe created from thermally drawn multi-electrode polymer fiber, aimed at enhancing in vivo ion homeostasis studies. This probe employs a carbon nanofiber (CNF)/graphene composite as the sensing material, utilizing a thermal drawing process, laser machining, and material functionalization to fabricate multiplexed ion probes. Our design incorporates electrodes on micron-scale fibers for sensing Na<sup>+</sup>, K<sup>+</sup> and Cl<sup>−</sup> ions, alongside an electrode for electrophysiology recording, achieving excellent sensitivity, stability, selectivity, and reversibility in distilled water and artificial cerebrospinal fluid solutions (aCSF). These results demonstrate the potential of the probe for future in vivo applications.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"Article 127249"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing multiplexed ion monitoring techniques: The development of integrated thermally drawn polymer fiber-based ion probes\",\"authors\":\"Jingxuan Wu , Tomoki Saizaki , Tatsuo Yoshinobu , Yuanyuan Guo\",\"doi\":\"10.1016/j.talanta.2024.127249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The monitoring of ion homeostasis in vivo is of paramount importance due to its critical functions in biological systems. However, current leading technologies for creating ion-selective electrodes often fall short of the requirements for in vivo applications in terms of multiplexity, miniaturization, and flexibility. To address this gap, we introduce an integrated multiplexed ion monitoring probe created from thermally drawn multi-electrode polymer fiber, aimed at enhancing in vivo ion homeostasis studies. This probe employs a carbon nanofiber (CNF)/graphene composite as the sensing material, utilizing a thermal drawing process, laser machining, and material functionalization to fabricate multiplexed ion probes. Our design incorporates electrodes on micron-scale fibers for sensing Na<sup>+</sup>, K<sup>+</sup> and Cl<sup>−</sup> ions, alongside an electrode for electrophysiology recording, achieving excellent sensitivity, stability, selectivity, and reversibility in distilled water and artificial cerebrospinal fluid solutions (aCSF). These results demonstrate the potential of the probe for future in vivo applications.</div></div>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"285 \",\"pages\":\"Article 127249\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003991402401628X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003991402401628X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancing multiplexed ion monitoring techniques: The development of integrated thermally drawn polymer fiber-based ion probes
The monitoring of ion homeostasis in vivo is of paramount importance due to its critical functions in biological systems. However, current leading technologies for creating ion-selective electrodes often fall short of the requirements for in vivo applications in terms of multiplexity, miniaturization, and flexibility. To address this gap, we introduce an integrated multiplexed ion monitoring probe created from thermally drawn multi-electrode polymer fiber, aimed at enhancing in vivo ion homeostasis studies. This probe employs a carbon nanofiber (CNF)/graphene composite as the sensing material, utilizing a thermal drawing process, laser machining, and material functionalization to fabricate multiplexed ion probes. Our design incorporates electrodes on micron-scale fibers for sensing Na+, K+ and Cl− ions, alongside an electrode for electrophysiology recording, achieving excellent sensitivity, stability, selectivity, and reversibility in distilled water and artificial cerebrospinal fluid solutions (aCSF). These results demonstrate the potential of the probe for future in vivo applications.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.