高通量免疫肿瘤学筛选发现 TNBC 细胞毒性化疗药物的免疫刺激特性

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancers Pub Date : 2024-12-05 DOI:10.3390/cancers16234075
Kennady K Bullock, Thomas Hasaka, Emily Days, Joshua A Bauer, Patricia A Ward, Ann Richmond
{"title":"高通量免疫肿瘤学筛选发现 TNBC 细胞毒性化疗药物的免疫刺激特性","authors":"Kennady K Bullock, Thomas Hasaka, Emily Days, Joshua A Bauer, Patricia A Ward, Ann Richmond","doi":"10.3390/cancers16234075","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Triple-negative breast cancers (TNBCs) typically have a greater immune cell infiltrate and are more likely to respond to immune checkpoint inhibition (ICI) than ER+ or HER2+ breast cancers. However, there is a crucial need to optimize combining chemotherapy strategies with ICI to enhance overall survival in TNBC. <b>Methods:</b> Therefore, we developed a high-throughput co-culture screening assay to identify compounds that enhance CD8+ T-cell-mediated tumor cell cytotoxicity. Over 400 FDA-approved compounds or agents under investigation for oncology indications were included in the screening library. <b>Results:</b> Four chemotherapy agents were chosen as priority hits for mechanistic follow-up due to their ability to enhance T-cell-mediated cytotoxicity at multiple doses and multiple time points: paclitaxel, bleomycin sulfate, ispinesib, and etoposide. Lead compounds affected the expression of MHCI, MHCII, and PD-L1 and induced markers of immunogenic cell death (extracellular ATP or HMGB1). <b>Conclusions:</b> Based on the ability to increase tumor cell susceptibility to T-cell-mediated cytotoxicity while minimizing T-cell toxicity, bleomycin was identified as the most promising lead candidate. Overall, the results of these studies provide mechanistic insight into potential new chemotherapy partners to enhance anti-PD-1 efficacy in TNBC patients.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 23","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Throughput Immune-Oncology Screen Identifies Immunostimulatory Properties of Cytotoxic Chemotherapy Agents in TNBC.\",\"authors\":\"Kennady K Bullock, Thomas Hasaka, Emily Days, Joshua A Bauer, Patricia A Ward, Ann Richmond\",\"doi\":\"10.3390/cancers16234075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Triple-negative breast cancers (TNBCs) typically have a greater immune cell infiltrate and are more likely to respond to immune checkpoint inhibition (ICI) than ER+ or HER2+ breast cancers. However, there is a crucial need to optimize combining chemotherapy strategies with ICI to enhance overall survival in TNBC. <b>Methods:</b> Therefore, we developed a high-throughput co-culture screening assay to identify compounds that enhance CD8+ T-cell-mediated tumor cell cytotoxicity. Over 400 FDA-approved compounds or agents under investigation for oncology indications were included in the screening library. <b>Results:</b> Four chemotherapy agents were chosen as priority hits for mechanistic follow-up due to their ability to enhance T-cell-mediated cytotoxicity at multiple doses and multiple time points: paclitaxel, bleomycin sulfate, ispinesib, and etoposide. Lead compounds affected the expression of MHCI, MHCII, and PD-L1 and induced markers of immunogenic cell death (extracellular ATP or HMGB1). <b>Conclusions:</b> Based on the ability to increase tumor cell susceptibility to T-cell-mediated cytotoxicity while minimizing T-cell toxicity, bleomycin was identified as the most promising lead candidate. Overall, the results of these studies provide mechanistic insight into potential new chemotherapy partners to enhance anti-PD-1 efficacy in TNBC patients.</p>\",\"PeriodicalId\":9681,\"journal\":{\"name\":\"Cancers\",\"volume\":\"16 23\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/cancers16234075\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16234075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High-Throughput Immune-Oncology Screen Identifies Immunostimulatory Properties of Cytotoxic Chemotherapy Agents in TNBC.

Background: Triple-negative breast cancers (TNBCs) typically have a greater immune cell infiltrate and are more likely to respond to immune checkpoint inhibition (ICI) than ER+ or HER2+ breast cancers. However, there is a crucial need to optimize combining chemotherapy strategies with ICI to enhance overall survival in TNBC. Methods: Therefore, we developed a high-throughput co-culture screening assay to identify compounds that enhance CD8+ T-cell-mediated tumor cell cytotoxicity. Over 400 FDA-approved compounds or agents under investigation for oncology indications were included in the screening library. Results: Four chemotherapy agents were chosen as priority hits for mechanistic follow-up due to their ability to enhance T-cell-mediated cytotoxicity at multiple doses and multiple time points: paclitaxel, bleomycin sulfate, ispinesib, and etoposide. Lead compounds affected the expression of MHCI, MHCII, and PD-L1 and induced markers of immunogenic cell death (extracellular ATP or HMGB1). Conclusions: Based on the ability to increase tumor cell susceptibility to T-cell-mediated cytotoxicity while minimizing T-cell toxicity, bleomycin was identified as the most promising lead candidate. Overall, the results of these studies provide mechanistic insight into potential new chemotherapy partners to enhance anti-PD-1 efficacy in TNBC patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信