过氧化物中的埋藏界面工程:推动可持续光伏技术的发展。

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jihyun Kim, William Jo
{"title":"过氧化物中的埋藏界面工程:推动可持续光伏技术的发展。","authors":"Jihyun Kim,&nbsp;William Jo","doi":"10.1186/s40580-024-00464-z","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00464-z","citationCount":"0","resultStr":"{\"title\":\"Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics\",\"authors\":\"Jihyun Kim,&nbsp;William Jo\",\"doi\":\"10.1186/s40580-024-00464-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00464-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-024-00464-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00464-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池(PSCs)因其高功率转换效率(PCE)和具有成本效益、大规模生产的潜力而受到广泛关注。本文综述了埋藏界面工程在提高具有n型电子传输层/钙钛矿/p型空穴传输层(n-i-p)和p型空穴传输层/钙钛矿/n型电子传输层(p-i-n)结构的psc的性能和稳定性中的作用。这项研究强调了与界面工程相关的关键挑战,如电荷提取、重组损失和能级对齐。各种界面工程技术,如表面钝化、自组装单层和增材工程,在减轻复合损失和提高长期器件稳定性方面的有效性进行了探索。本文还深入分析了电子和空穴传输层的材料选择,缺陷管理技术,以及这些对钙钛矿薄膜质量和器件稳定性的影响。讨论了埋藏界面的高级表征方法,提供了对控制器件性能的结构,形态和电子特性的见解。此外,我们探索了针对埋藏界面的均匀阳离子分布和相稳定性的新兴方法,这两者对于提高pce超越当前基准至关重要。通过对最新研究成果的综合和对关键挑战的识别,本文旨在指导PSCs界面工程的未来发展方向,并确保其在下一代可持续能源技术中的成功应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics

Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信