{"title":"具有强大抗菌活性的超短肽水凝胶生物材料","authors":"Bapan Pramanik, Payel Mukherjee, Sahnawaz Ahmed","doi":"10.1002/asia.202401137","DOIUrl":null,"url":null,"abstract":"<p><p>For the past few decades, ultrashort peptide hydrogels have been at the forefront of biomaterials due to their unique properties like biocompatibility, tunable mechanical properties, and potent antibacterial activity. These ultrashort peptides self-assemble into a hydrogel matrix with nanofibrous networks. In this minireview, we have explored the design and self-assembly of these ultrashort peptide hydrogels by focusing on their antibacterial properties. Cationic and hydrophobic residues are incorporated to engineer the peptides, facilitating interaction with bacterial membranes and leading to membrane disruption and cell death. The hydrogels exhibit broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, this minireview highlights the potential of ultrashort peptide hydrogels as versatile and practical antibacterial biomaterials, providing a novel approach to combating bacterial infections and addressing the growing challenge of antibiotic resistance.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401137"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrashort Peptide Hydrogels Biomaterials with Potent Antibacterial Activity.\",\"authors\":\"Bapan Pramanik, Payel Mukherjee, Sahnawaz Ahmed\",\"doi\":\"10.1002/asia.202401137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For the past few decades, ultrashort peptide hydrogels have been at the forefront of biomaterials due to their unique properties like biocompatibility, tunable mechanical properties, and potent antibacterial activity. These ultrashort peptides self-assemble into a hydrogel matrix with nanofibrous networks. In this minireview, we have explored the design and self-assembly of these ultrashort peptide hydrogels by focusing on their antibacterial properties. Cationic and hydrophobic residues are incorporated to engineer the peptides, facilitating interaction with bacterial membranes and leading to membrane disruption and cell death. The hydrogels exhibit broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, this minireview highlights the potential of ultrashort peptide hydrogels as versatile and practical antibacterial biomaterials, providing a novel approach to combating bacterial infections and addressing the growing challenge of antibiotic resistance.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202401137\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401137\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401137","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrashort Peptide Hydrogels Biomaterials with Potent Antibacterial Activity.
For the past few decades, ultrashort peptide hydrogels have been at the forefront of biomaterials due to their unique properties like biocompatibility, tunable mechanical properties, and potent antibacterial activity. These ultrashort peptides self-assemble into a hydrogel matrix with nanofibrous networks. In this minireview, we have explored the design and self-assembly of these ultrashort peptide hydrogels by focusing on their antibacterial properties. Cationic and hydrophobic residues are incorporated to engineer the peptides, facilitating interaction with bacterial membranes and leading to membrane disruption and cell death. The hydrogels exhibit broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, this minireview highlights the potential of ultrashort peptide hydrogels as versatile and practical antibacterial biomaterials, providing a novel approach to combating bacterial infections and addressing the growing challenge of antibiotic resistance.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).