氢键三聚氰酸*三聚氰胺(CA*M)网络中的分子间和分子内电荷重分布:来自核心能级光谱和自然键轨道分析的见解。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Daniele Toffoli, Roberto Costantini, Elisa Bernes, Lorys Di Nardi, Gabriele Balducci, Elisa Viola, Giovanna Fronzoni, Albano Cossaro, Valeria Lanzilotto
{"title":"氢键三聚氰酸*三聚氰胺(CA*M)网络中的分子间和分子内电荷重分布:来自核心能级光谱和自然键轨道分析的见解。","authors":"Daniele Toffoli,&nbsp;Roberto Costantini,&nbsp;Elisa Bernes,&nbsp;Lorys Di Nardi,&nbsp;Gabriele Balducci,&nbsp;Elisa Viola,&nbsp;Giovanna Fronzoni,&nbsp;Albano Cossaro,&nbsp;Valeria Lanzilotto","doi":"10.1002/chem.202403782","DOIUrl":null,"url":null,"abstract":"<p>In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule. These findings were further confirmed by theoretical simulation of the ionization potentials (IPs), which were computed using unsupported models of the H-bonded networks. A natural bond orbital (NBO) analysis performed on the three systems helped to rationalize the net charge transfer form M to CA. Finally, we observed that intramolecular interactions (electron delocalization effects) contribute progressively to the charge redistributions inside the two molecules when going from the homomolecular to the heteromolecular networks.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"31 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202403782","citationCount":"0","resultStr":"{\"title\":\"Inter- and Intra-Molecular Charge Redistributions in H-Bonded Cyanuric Acid*Melamine (CA*M) Networks: Insight From Core Level Spectroscopy and Natural Bond Orbital Analysis\",\"authors\":\"Daniele Toffoli,&nbsp;Roberto Costantini,&nbsp;Elisa Bernes,&nbsp;Lorys Di Nardi,&nbsp;Gabriele Balducci,&nbsp;Elisa Viola,&nbsp;Giovanna Fronzoni,&nbsp;Albano Cossaro,&nbsp;Valeria Lanzilotto\",\"doi\":\"10.1002/chem.202403782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule. These findings were further confirmed by theoretical simulation of the ionization potentials (IPs), which were computed using unsupported models of the H-bonded networks. A natural bond orbital (NBO) analysis performed on the three systems helped to rationalize the net charge transfer form M to CA. Finally, we observed that intramolecular interactions (electron delocalization effects) contribute progressively to the charge redistributions inside the two molecules when going from the homomolecular to the heteromolecular networks.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\"31 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.202403782\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chem.202403782\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chem.202403782","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们阐明了三聚氰尿酸(CA)和三聚氰胺(M)分子在CA的亚胺基团和M的二氨基吡啶基团之间形成三重氢键时发生的电荷重分布。为了实现这一目标,我们使用x射线光电发射(XPS)和近边缘x射线吸收精细结构(NEXAFS)光谱研究了生长在Au(111)表面的M、CA和CA*M的二维氢键组装体。与同分子网络相比,混合样品的光谱显示CA和M的核能级方向相反,表明CA分子上的电荷积累几乎是互补的,而M分子上的电荷耗尽。这些发现进一步证实了理论模拟的电离势(ip),这是使用不支持的h键网络模型计算的。对这三种体系进行的自然键轨道(NBO)分析有助于合理解释M到CA的净电荷转移。最后,我们观察到分子内相互作用(电子离域效应)在从同分子网络到异分子网络的过程中逐渐促进了两分子内部的电荷重新分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inter- and Intra-Molecular Charge Redistributions in H-Bonded Cyanuric Acid*Melamine (CA*M) Networks: Insight From Core Level Spectroscopy and Natural Bond Orbital Analysis

Inter- and Intra-Molecular Charge Redistributions in H-Bonded Cyanuric Acid*Melamine (CA*M) Networks: Insight From Core Level Spectroscopy and Natural Bond Orbital Analysis

In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule. These findings were further confirmed by theoretical simulation of the ionization potentials (IPs), which were computed using unsupported models of the H-bonded networks. A natural bond orbital (NBO) analysis performed on the three systems helped to rationalize the net charge transfer form M to CA. Finally, we observed that intramolecular interactions (electron delocalization effects) contribute progressively to the charge redistributions inside the two molecules when going from the homomolecular to the heteromolecular networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信