优化互反网格的收敛分析和预测:第一原理和机器学习研究。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-01-09 Epub Date: 2024-12-16 DOI:10.1021/acs.jpca.4c05782
Jinyoung Byun, Donggeon Lee, Euyheon Hwang, Sooran Kim, Ji-Sang Park
{"title":"优化互反网格的收敛分析和预测:第一原理和机器学习研究。","authors":"Jinyoung Byun, Donggeon Lee, Euyheon Hwang, Sooran Kim, Ji-Sang Park","doi":"10.1021/acs.jpca.4c05782","DOIUrl":null,"url":null,"abstract":"<p><p>When crystalline materials are investigated by performing first-principles density functional theory (DFT) calculations, the reciprocal grid should be fine enough to obtain the converged total energy and electronic structure. Herein, we performed a convergence test of the total energy for the density of reciprocal points to determine fine enough reciprocal grids for high-throughput calculations. Our results show that the nonlinearity of the band structures affects the convergence of the total energy, especially for materials with a finite band gap. We further investigate which physical properties make a finer reciprocal grid necessary based on machine learning (ML) analysis. Our developed models using DFT-based features and elemental properties-based features exhibit <i>R</i><sup>2</sup> of 0.803 and 0.880, respectively. Our ML model quantitatively shows the importance of nonlinearity and band gaps in predicting errors in total energy calculations. Furthermore, our ML model using elemental features can be applied to estimate the appropriate reciprocal grid, facilitating high-throughput calculations.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"367-372"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis and Predictions for Optimizing Reciprocal Grids: A First-Principles and Machine Learning Study.\",\"authors\":\"Jinyoung Byun, Donggeon Lee, Euyheon Hwang, Sooran Kim, Ji-Sang Park\",\"doi\":\"10.1021/acs.jpca.4c05782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When crystalline materials are investigated by performing first-principles density functional theory (DFT) calculations, the reciprocal grid should be fine enough to obtain the converged total energy and electronic structure. Herein, we performed a convergence test of the total energy for the density of reciprocal points to determine fine enough reciprocal grids for high-throughput calculations. Our results show that the nonlinearity of the band structures affects the convergence of the total energy, especially for materials with a finite band gap. We further investigate which physical properties make a finer reciprocal grid necessary based on machine learning (ML) analysis. Our developed models using DFT-based features and elemental properties-based features exhibit <i>R</i><sup>2</sup> of 0.803 and 0.880, respectively. Our ML model quantitatively shows the importance of nonlinearity and band gaps in predicting errors in total energy calculations. Furthermore, our ML model using elemental features can be applied to estimate the appropriate reciprocal grid, facilitating high-throughput calculations.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"367-372\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c05782\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05782","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

当晶体材料通过第一性原理密度泛函理论(DFT)计算进行研究时,互反网格应该足够精细,以获得聚合的总能量和电子结构。在此,我们对互易点密度的总能量进行了收敛测试,以确定足够精细的互易网格以进行高通量计算。结果表明,带结构的非线性影响了总能量的收敛,特别是对于带隙有限的材料。我们进一步研究了哪些物理性质使得基于机器学习(ML)分析的更精细的互反网格是必要的。我们开发的基于dft特征和基于元素属性特征的模型的R2分别为0.803和0.880。我们的机器学习模型定量地显示了非线性和带隙在预测总能量计算误差中的重要性。此外,我们使用元素特征的机器学习模型可以用于估计适当的互反网格,从而促进高通量计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis and Predictions for Optimizing Reciprocal Grids: A First-Principles and Machine Learning Study.

When crystalline materials are investigated by performing first-principles density functional theory (DFT) calculations, the reciprocal grid should be fine enough to obtain the converged total energy and electronic structure. Herein, we performed a convergence test of the total energy for the density of reciprocal points to determine fine enough reciprocal grids for high-throughput calculations. Our results show that the nonlinearity of the band structures affects the convergence of the total energy, especially for materials with a finite band gap. We further investigate which physical properties make a finer reciprocal grid necessary based on machine learning (ML) analysis. Our developed models using DFT-based features and elemental properties-based features exhibit R2 of 0.803 and 0.880, respectively. Our ML model quantitatively shows the importance of nonlinearity and band gaps in predicting errors in total energy calculations. Furthermore, our ML model using elemental features can be applied to estimate the appropriate reciprocal grid, facilitating high-throughput calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信