用于姜黄素给药的具有刺激响应性的齐聚物脂质体:通过酶特异性和高热触发释放增强 M2 巨噬细胞极化并降低氧化应激。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Suman Basak, Tushar Kanti Das
{"title":"用于姜黄素给药的具有刺激响应性的齐聚物脂质体:通过酶特异性和高热触发释放增强 M2 巨噬细胞极化并降低氧化应激。","authors":"Suman Basak, Tushar Kanti Das","doi":"10.1021/acsabm.4c01579","DOIUrl":null,"url":null,"abstract":"<p><p>A zwitterionic, stimuli-responsive liposomal system was meticulously designed for the precise and controlled delivery of curcumin, leveraging enzyme-specific and hyperthermic stimuli to enhance therapeutic outcomes. This platform is specifically engineered to release curcumin in response to <i>phospholipase A2</i>, an enzyme that degrades phospholipids, enabling highly targeted and site-specific drug release. Mild hyperthermia (40 °C) further enhances membrane permeability and activates thermosensitive carriers, optimizing drug delivery. Curcumin encapsulation is facilitated through a combination of zwitterionic and electrostatic interactions, significantly improving both loading capacity and encapsulation efficiency. A design of experiments (DoE) approach was employed to systematically optimize lipid-to-cholesterol ratios and formulation conditions. The liposomal system was thoroughly characterized using dynamic light scattering, zeta potential measurements, and transmission electron microscopy, ensuring stability and structural integrity. Notably, this system effectively encapsulates hydrophobic curcumin while maintaining particle size and bioactivity. <i>In vitro</i> studies revealed robust antioxidant and anti-ROS activities, alongside excellent biocompatibility, with no cytotoxicity observed at concentrations up to 2000 μg/mL. Furthermore, the zwitterionic liposomes enhanced M2 macrophage polarization and reduced oxidative stress. This advanced platform offers a promising, biocompatible solution for targeted curcumin delivery.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zwitterionic, Stimuli-Responsive Liposomes for Curcumin Drug Delivery: Enhancing M2 Macrophage Polarization and Reducing Oxidative Stress through Enzyme-Specific and Hyperthermia-Triggered Release.\",\"authors\":\"Suman Basak, Tushar Kanti Das\",\"doi\":\"10.1021/acsabm.4c01579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A zwitterionic, stimuli-responsive liposomal system was meticulously designed for the precise and controlled delivery of curcumin, leveraging enzyme-specific and hyperthermic stimuli to enhance therapeutic outcomes. This platform is specifically engineered to release curcumin in response to <i>phospholipase A2</i>, an enzyme that degrades phospholipids, enabling highly targeted and site-specific drug release. Mild hyperthermia (40 °C) further enhances membrane permeability and activates thermosensitive carriers, optimizing drug delivery. Curcumin encapsulation is facilitated through a combination of zwitterionic and electrostatic interactions, significantly improving both loading capacity and encapsulation efficiency. A design of experiments (DoE) approach was employed to systematically optimize lipid-to-cholesterol ratios and formulation conditions. The liposomal system was thoroughly characterized using dynamic light scattering, zeta potential measurements, and transmission electron microscopy, ensuring stability and structural integrity. Notably, this system effectively encapsulates hydrophobic curcumin while maintaining particle size and bioactivity. <i>In vitro</i> studies revealed robust antioxidant and anti-ROS activities, alongside excellent biocompatibility, with no cytotoxicity observed at concentrations up to 2000 μg/mL. Furthermore, the zwitterionic liposomes enhanced M2 macrophage polarization and reduced oxidative stress. This advanced platform offers a promising, biocompatible solution for targeted curcumin delivery.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zwitterionic, Stimuli-Responsive Liposomes for Curcumin Drug Delivery: Enhancing M2 Macrophage Polarization and Reducing Oxidative Stress through Enzyme-Specific and Hyperthermia-Triggered Release.

A zwitterionic, stimuli-responsive liposomal system was meticulously designed for the precise and controlled delivery of curcumin, leveraging enzyme-specific and hyperthermic stimuli to enhance therapeutic outcomes. This platform is specifically engineered to release curcumin in response to phospholipase A2, an enzyme that degrades phospholipids, enabling highly targeted and site-specific drug release. Mild hyperthermia (40 °C) further enhances membrane permeability and activates thermosensitive carriers, optimizing drug delivery. Curcumin encapsulation is facilitated through a combination of zwitterionic and electrostatic interactions, significantly improving both loading capacity and encapsulation efficiency. A design of experiments (DoE) approach was employed to systematically optimize lipid-to-cholesterol ratios and formulation conditions. The liposomal system was thoroughly characterized using dynamic light scattering, zeta potential measurements, and transmission electron microscopy, ensuring stability and structural integrity. Notably, this system effectively encapsulates hydrophobic curcumin while maintaining particle size and bioactivity. In vitro studies revealed robust antioxidant and anti-ROS activities, alongside excellent biocompatibility, with no cytotoxicity observed at concentrations up to 2000 μg/mL. Furthermore, the zwitterionic liposomes enhanced M2 macrophage polarization and reduced oxidative stress. This advanced platform offers a promising, biocompatible solution for targeted curcumin delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信