高度分散的银纳米晶体锚定在n掺杂的多孔碳气凝胶上作为混合电容去离子中Cl -捕获的高质量负载电极

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-17 DOI:10.1002/smll.202409342
Weiqing Kong, Xiaoyuan Lu, Yaobin Wang, Kaixin Tan, Chenmiao Liu, Jianpeng Sun, Meng Zhang, Yuanyuan Feng
{"title":"高度分散的银纳米晶体锚定在n掺杂的多孔碳气凝胶上作为混合电容去离子中Cl -捕获的高质量负载电极","authors":"Weiqing Kong,&nbsp;Xiaoyuan Lu,&nbsp;Yaobin Wang,&nbsp;Kaixin Tan,&nbsp;Chenmiao Liu,&nbsp;Jianpeng Sun,&nbsp;Meng Zhang,&nbsp;Yuanyuan Feng","doi":"10.1002/smll.202409342","DOIUrl":null,"url":null,"abstract":"<p>Nanostructured Faradaic materials show extraordinary promise for capacitive deionization (CDI) toward the relief of global freshwater scarcity. But at present, there exist at least two shortages for the development of CDI electrode materials. In laboratory studies, evaluating their desalination performance is usually based on low mass loadings (&lt;1 mg cm<sup>−2</sup>), which is far behind the practical demand for fabricating high-mass-loading CDI electrodes or devices. On the other hand, high efficient, high active anode materials are rather scarce. Herein, highly dispersed Ag nanocrystals are synthesized on N-doped holey carbon (Ag@NHC) for use as a high-performance Cl<sup>−</sup>-capture electrode at practical levels of mass loading. The Ag@NHC material is characteristic of ultrafine Ag nanocrystals with size of ≈7 nm anchored on carbon through Ag─N bonds, abundant 1–20 nm in-plane pores in carbon sheets, and an ultrahigh specific surface area (1827.9 m<sup>2</sup> g<sup>−1</sup>). This ensures Ag@NHC electrode (at 6.4 mg cm<sup>−2</sup> mass loading) with excellent structural and property stabilities, &gt;80% atom-economic utilization of Ag, as well as superior Cl<sup>−</sup>-capture performances. This work provides a general guideline on how to estimate the optimal mass loadings for constructing highly active CDI electrodes in the future.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 5","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Dispersed Ag Nanocrystals Anchored on N-Doped Holey Carbon Aerogel as High-Mass-Loading Electrode for Cl− Capture in Hybrid Capacitive Deionization\",\"authors\":\"Weiqing Kong,&nbsp;Xiaoyuan Lu,&nbsp;Yaobin Wang,&nbsp;Kaixin Tan,&nbsp;Chenmiao Liu,&nbsp;Jianpeng Sun,&nbsp;Meng Zhang,&nbsp;Yuanyuan Feng\",\"doi\":\"10.1002/smll.202409342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanostructured Faradaic materials show extraordinary promise for capacitive deionization (CDI) toward the relief of global freshwater scarcity. But at present, there exist at least two shortages for the development of CDI electrode materials. In laboratory studies, evaluating their desalination performance is usually based on low mass loadings (&lt;1 mg cm<sup>−2</sup>), which is far behind the practical demand for fabricating high-mass-loading CDI electrodes or devices. On the other hand, high efficient, high active anode materials are rather scarce. Herein, highly dispersed Ag nanocrystals are synthesized on N-doped holey carbon (Ag@NHC) for use as a high-performance Cl<sup>−</sup>-capture electrode at practical levels of mass loading. The Ag@NHC material is characteristic of ultrafine Ag nanocrystals with size of ≈7 nm anchored on carbon through Ag─N bonds, abundant 1–20 nm in-plane pores in carbon sheets, and an ultrahigh specific surface area (1827.9 m<sup>2</sup> g<sup>−1</sup>). This ensures Ag@NHC electrode (at 6.4 mg cm<sup>−2</sup> mass loading) with excellent structural and property stabilities, &gt;80% atom-economic utilization of Ag, as well as superior Cl<sup>−</sup>-capture performances. This work provides a general guideline on how to estimate the optimal mass loadings for constructing highly active CDI electrodes in the future.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 5\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409342\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409342","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米结构法拉第材料在电容去离子(CDI)方面显示出非凡的前景,以缓解全球淡水短缺。但目前,CDI电极材料的开发至少存在两方面的不足。在实验室研究中,评估它们的脱盐性能通常是基于低质量负荷(1 mg cm - 2),这远远落后于制造高质量负荷CDI电极或设备的实际需求。另一方面,高效、高活性的阳极材料十分稀缺。在此,在n掺杂的多孔碳(Ag@NHC)上合成了高度分散的银纳米晶体,用于在实际质量负载水平上作为高性能的Cl−捕获电极。Ag@NHC材料具有尺寸约为≈7 nm的超细银纳米晶体,通过Ag─N键固定在碳上,碳片上有丰富的1 - 20 nm的面内孔,具有超高的比表面积(1827.9 m2 g−1)。这确保了Ag@NHC电极(6.4 mg cm−2质量负载)具有优异的结构和性能稳定性,>;80%的Ag原子经济利用率,以及优越的Cl−捕获性能。这项工作为如何估计未来构建高活性CDI电极的最佳质量负荷提供了一般指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Dispersed Ag Nanocrystals Anchored on N-Doped Holey Carbon Aerogel as High-Mass-Loading Electrode for Cl− Capture in Hybrid Capacitive Deionization

Highly Dispersed Ag Nanocrystals Anchored on N-Doped Holey Carbon Aerogel as High-Mass-Loading Electrode for Cl− Capture in Hybrid Capacitive Deionization

Highly Dispersed Ag Nanocrystals Anchored on N-Doped Holey Carbon Aerogel as High-Mass-Loading Electrode for Cl− Capture in Hybrid Capacitive Deionization

Nanostructured Faradaic materials show extraordinary promise for capacitive deionization (CDI) toward the relief of global freshwater scarcity. But at present, there exist at least two shortages for the development of CDI electrode materials. In laboratory studies, evaluating their desalination performance is usually based on low mass loadings (<1 mg cm−2), which is far behind the practical demand for fabricating high-mass-loading CDI electrodes or devices. On the other hand, high efficient, high active anode materials are rather scarce. Herein, highly dispersed Ag nanocrystals are synthesized on N-doped holey carbon (Ag@NHC) for use as a high-performance Cl-capture electrode at practical levels of mass loading. The Ag@NHC material is characteristic of ultrafine Ag nanocrystals with size of ≈7 nm anchored on carbon through Ag─N bonds, abundant 1–20 nm in-plane pores in carbon sheets, and an ultrahigh specific surface area (1827.9 m2 g−1). This ensures Ag@NHC electrode (at 6.4 mg cm−2 mass loading) with excellent structural and property stabilities, >80% atom-economic utilization of Ag, as well as superior Cl-capture performances. This work provides a general guideline on how to estimate the optimal mass loadings for constructing highly active CDI electrodes in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信