{"title":"π-d共轭配位介导催化四电子转移快速充电锌碘水电池","authors":"Deyang Guan, Zhaohui Deng, Wen Luo, Chaojie Cheng, Feiyue Wang, Hongwei Cai, Ruixi Chen, Pei Wang, Mingyu Wu, Chenjing Han, Zhiyuan Liu, Dongliang Ma, Liqiang Mai","doi":"10.1016/j.matt.2024.11.026","DOIUrl":null,"url":null,"abstract":"π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I<sub>2</sub> battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I<sup>−</sup>/I<sup>0</sup> two-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of 226.4 mAh g<sup>−1</sup> at 0.4 A g<sup>−1</sup> (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g<sup>−1</sup>. The assembled I<sup>−</sup>/I<sup>0</sup>/I<sup>+</sup> four-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of up to 337.1 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding rate performance (155.6 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and cycle performance (12,000 cycles at 10 A g<sup>−1</sup>). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I<sub>2</sub> battery electrode material enabled with the promising four-electron transfer reaction.","PeriodicalId":388,"journal":{"name":"Matter","volume":"1 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries\",\"authors\":\"Deyang Guan, Zhaohui Deng, Wen Luo, Chaojie Cheng, Feiyue Wang, Hongwei Cai, Ruixi Chen, Pei Wang, Mingyu Wu, Chenjing Han, Zhiyuan Liu, Dongliang Ma, Liqiang Mai\",\"doi\":\"10.1016/j.matt.2024.11.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I<sub>2</sub> battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I<sup>−</sup>/I<sup>0</sup> two-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of 226.4 mAh g<sup>−1</sup> at 0.4 A g<sup>−1</sup> (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g<sup>−1</sup>. The assembled I<sup>−</sup>/I<sup>0</sup>/I<sup>+</sup> four-electron-transfer Zn-I<sub>2</sub> battery provides a specific capacity of up to 337.1 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> with outstanding rate performance (155.6 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and cycle performance (12,000 cycles at 10 A g<sup>−1</sup>). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I<sub>2</sub> battery electrode material enabled with the promising four-electron transfer reaction.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.11.026\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.11.026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们开发了具有独特堆叠结构的 π-d 共轭配位聚合物 (CCP),用于在水性 Zn-I2 电池中通过化学吸附实现碘的纳米化。这种堆叠结构可使有序的原子阵列上聚集局部电子,从而增强内置电场,优化碘物种演化的环境。组装好的 I-/I0 双电子转移 Zn-I2 电池在 0.4 A g-1 条件下(过电位为 42 mV)比容量为 226.4 mAh g-1,在 10 A g-1 条件下可循环使用 60,000 次。组装好的 I-/I0/I+ 四电子转移 Zn-I2 电池在 5 A g-1 时的比容量高达 337.1 mAh g-1,并具有出色的速率性能(50 A g-1 时 155.6 mAh g-1)和循环性能(10 A g-1 时 12,000 次循环)。本研究采用有针对性的分子设计和系统优化方法,利用前景广阔的四电子转移反应开发出了一种高性能水性 Zn-I2 电池电极材料。
π-d conjugated coordination polymers (CCPs) with unique stacking structures are developed for the nanoconfinement of iodine by chemisorption in an aqueous Zn-I2 battery. The stacking structure allows for the accumulation of localized electrons on a well-ordered atomic array, which enhances the built-in electric field, thereby optimizing the environment for the evolution of iodine species. The assembled I−/I0 two-electron-transfer Zn-I2 battery provides a specific capacity of 226.4 mAh g−1 at 0.4 A g−1 (an overpotential of 42 mV) and achieves 60,000 cycles at 10 A g−1. The assembled I−/I0/I+ four-electron-transfer Zn-I2 battery provides a specific capacity of up to 337.1 mAh g−1 at 5 A g−1 with outstanding rate performance (155.6 mAh g−1 at 50 A g−1) and cycle performance (12,000 cycles at 10 A g−1). This study employs targeted molecular design and systematic optimization to develop a high-performance aqueous Zn-I2 battery electrode material enabled with the promising four-electron transfer reaction.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.