互锁诱导的二硫化钨晶体拓扑相变

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
A. K. M. Manjur Hossain, Joseph McBride, Masoumeh Mahmoudi Gahrouei, Sabin Gautam, Jefferson A. Carter, Piumi Indrachapa Samarawickrama, John F. Ackerman, Laura Rita de Sousa Oliveira, Jinke Tang, Jifa Tian, Brian M. Leonard
{"title":"互锁诱导的二硫化钨晶体拓扑相变","authors":"A. K. M. Manjur Hossain, Joseph McBride, Masoumeh Mahmoudi Gahrouei, Sabin Gautam, Jefferson A. Carter, Piumi Indrachapa Samarawickrama, John F. Ackerman, Laura Rita de Sousa Oliveira, Jinke Tang, Jifa Tian, Brian M. Leonard","doi":"10.1021/acs.chemmater.4c02160","DOIUrl":null,"url":null,"abstract":"Recent research has demonstrated the potential for topological superconductivity, anisotropic Majorana bound states, optical nonlinearity, and enhanced electrochemical activity for transition metal dichalcogenides (TMDs) with a 2M structure. These unique TMD compounds exhibit metastability and, upon heating, undergo a transition to the thermodynamically stable 2H phase. The 2M phase is commonly made at high temperatures using traditional solid-state methods, and this metastability further complicates the growth of large 2M WS<sub>2</sub> crystals. Herein, a novel synthetic method was developed, focusing on a molten salt reaction to synthesize large 2H crystals and then inducing transformation to the 2M phase through intercalation and thermal treatment. The 2H crystals were intercalated via a room-temperature sodium naphthalenide solution, producing a previously unreported Na-intercalated 2H WS<sub>2</sub> phase. Thermal heating was required to facilitate the phase transition to the intercalated 2M crystal structure. This phase transition was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS), and Raman spectroscopy, which confirmed the synthesis of the intercalated 2M phase. Upon deintercalation, crystal and powder samples showed superconductivity with a <i>T</i><sub>c</sub> of 8.6–8.7 K, similar to previously reported values. The generality of this process was further demonstrated using alkali metal triethyl borohydride to intercalate 2H WS<sub>2</sub> and produced the desired 2M phase. This novel synthetic method has broad implications for discovering metastable phases in other TMD families and layered materials. Separation of the intercalation and phase transition also has the potential to allow for large-scale synthesis of this technologically important phase with greater control over each step of the reaction.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"43 2 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercalation-Induced Topotactic Phase Transformation of Tungsten Disulfide Crystals\",\"authors\":\"A. K. M. Manjur Hossain, Joseph McBride, Masoumeh Mahmoudi Gahrouei, Sabin Gautam, Jefferson A. Carter, Piumi Indrachapa Samarawickrama, John F. Ackerman, Laura Rita de Sousa Oliveira, Jinke Tang, Jifa Tian, Brian M. Leonard\",\"doi\":\"10.1021/acs.chemmater.4c02160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has demonstrated the potential for topological superconductivity, anisotropic Majorana bound states, optical nonlinearity, and enhanced electrochemical activity for transition metal dichalcogenides (TMDs) with a 2M structure. These unique TMD compounds exhibit metastability and, upon heating, undergo a transition to the thermodynamically stable 2H phase. The 2M phase is commonly made at high temperatures using traditional solid-state methods, and this metastability further complicates the growth of large 2M WS<sub>2</sub> crystals. Herein, a novel synthetic method was developed, focusing on a molten salt reaction to synthesize large 2H crystals and then inducing transformation to the 2M phase through intercalation and thermal treatment. The 2H crystals were intercalated via a room-temperature sodium naphthalenide solution, producing a previously unreported Na-intercalated 2H WS<sub>2</sub> phase. Thermal heating was required to facilitate the phase transition to the intercalated 2M crystal structure. This phase transition was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS), and Raman spectroscopy, which confirmed the synthesis of the intercalated 2M phase. Upon deintercalation, crystal and powder samples showed superconductivity with a <i>T</i><sub>c</sub> of 8.6–8.7 K, similar to previously reported values. The generality of this process was further demonstrated using alkali metal triethyl borohydride to intercalate 2H WS<sub>2</sub> and produced the desired 2M phase. This novel synthetic method has broad implications for discovering metastable phases in other TMD families and layered materials. Separation of the intercalation and phase transition also has the potential to allow for large-scale synthesis of this technologically important phase with greater control over each step of the reaction.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"43 2 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02160\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02160","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,具有 2M 结构的过渡金属二掺杂化合物 (TMD) 具有拓扑超导、各向异性马约拉纳束缚态、光学非线性和增强电化学活性的潜力。这些独特的 TMD 化合物表现出易变性,加热后会转变为热力学稳定的 2H 相。2M 相通常是在高温下使用传统固态方法制造的,这种瞬变性使大型 2M WS2 晶体的生长更加复杂。在此,我们开发了一种新的合成方法,主要通过熔盐反应合成大型 2H 晶体,然后通过插层和热处理诱导向 2M 相转变。2H 晶体通过室温萘化钠溶液进行插层,产生了一种之前未报道过的萘插层 2H WS2 相。需要通过热加热来促进向插层 2M 晶体结构的相变。通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、选区电子衍射 (SAED)、电子色散 X 射线光谱 (EDS) 和拉曼光谱对这一相变进行了研究,证实了插层 2M 相的合成。脱插后,晶体和粉末样品显示出超导性,Tc 为 8.6-8.7 K,与之前报道的数值相似。使用碱金属三乙基硼氢化物夹杂 2H WS2 并生成所需的 2M 相,进一步证明了这一过程的通用性。这种新颖的合成方法对于发现其他 TMD 家族和层状材料中的可转移相具有广泛的意义。分离插层和相变也有可能大规模合成这种具有重要技术意义的相,并能更好地控制反应的每个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intercalation-Induced Topotactic Phase Transformation of Tungsten Disulfide Crystals

Intercalation-Induced Topotactic Phase Transformation of Tungsten Disulfide Crystals
Recent research has demonstrated the potential for topological superconductivity, anisotropic Majorana bound states, optical nonlinearity, and enhanced electrochemical activity for transition metal dichalcogenides (TMDs) with a 2M structure. These unique TMD compounds exhibit metastability and, upon heating, undergo a transition to the thermodynamically stable 2H phase. The 2M phase is commonly made at high temperatures using traditional solid-state methods, and this metastability further complicates the growth of large 2M WS2 crystals. Herein, a novel synthetic method was developed, focusing on a molten salt reaction to synthesize large 2H crystals and then inducing transformation to the 2M phase through intercalation and thermal treatment. The 2H crystals were intercalated via a room-temperature sodium naphthalenide solution, producing a previously unreported Na-intercalated 2H WS2 phase. Thermal heating was required to facilitate the phase transition to the intercalated 2M crystal structure. This phase transition was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), electron dispersive X-ray spectroscopy (EDS), and Raman spectroscopy, which confirmed the synthesis of the intercalated 2M phase. Upon deintercalation, crystal and powder samples showed superconductivity with a Tc of 8.6–8.7 K, similar to previously reported values. The generality of this process was further demonstrated using alkali metal triethyl borohydride to intercalate 2H WS2 and produced the desired 2M phase. This novel synthetic method has broad implications for discovering metastable phases in other TMD families and layered materials. Separation of the intercalation and phase transition also has the potential to allow for large-scale synthesis of this technologically important phase with greater control over each step of the reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信